Mathematical modeling of theoretical Cryptosporidium inactivation in full-scale ozonation reactors
Conditions for theoretical inactivation of Cryptosporidium by ozone could be achieved at full-scale facilities if their design is appropriate. To perform this task correctly the chemical engineer's approach for process design must be applied. This paper discusses the basic equations the estimation of the disinfection efficiency of different ozone reacting systems. Available kinetic data have been integrated in a global model accounting for the hydrodynamics and mass transfer performances of the ozonation reactor. Thus the proposed method allows one to predict Cryptosporidium inactivation level in a given ozonation system. However, if a specified disinfection goal is to be achieved for Cryptosporidium with the developed model it is also possible to choose and optimize the design of the ozone reactor.
Accès au document
Statut: | Consulter le site de l'éditeur pour accéder à cet article
|
Cote DDD: | 02/06974 |