Chers partenaires et clients, venez découvrir notre nouveau site institutionnel

Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding

A groundwater recharge process of heterogeneous hard rock aquifer in the Moole Hole experimental watershed, south India, is being studied to understand the groundwater flow behaviour. Significant seasonal variations in groundwater level are observed in boreholes located at the outlet area indicating that the recharge process is probably taking place below intermittent streams. In order to localize groundwater recharge zones and to optimize implementation of boreholes, a geophysical survey was carried out during and after the 2004 monsoon across the outlet zone. Magnetic resonance soundings (MRS) have been performed to characterize the aquifer and measure groundwater level depletion. The results of MRS are consistent with the observation in boreholes, but it suffers from degraded lateral resolution. A better resolution of the regolith/bedrock interface is achieved using electrical resistivity tomography (ERT). ERT results are confirmed by resistivity logging in the boreholes. ERT surveys have been carried out twice - before and during the monsoon - across the stream area. The major feature of recharge is revealed below the stream with a decrease by 80% of the calculated resistivity. The time-lapse ERT also shows unexpected variations at a depth of 20 m below the slopes that could have been interpreted as a consequence of a deep seasonal water flow. However, in this area time-lapse ERT does not match with borehole data. Numerical modelling shows that in the presence of a shallow water infiltration, an inversion artefact may take place thus limiting the reliability of time-lapse ERT. A combination of ERT with MRS provides valuable information on structure and aquifer properties respectively, giving a clue for a conceptual model of the recharge process: infiltration takes place in the conductive fractured-fissured part of the bedrock underlying the stream and clayey material present on both sides slows down its lateral dissipation.

Accès au document

Métadonnées du document