Land and sea study of the northeastern golfe du Lion rifted margin: the Oligocene – Miocene of southern Provence (Nerthe area, SE France)
In the western Mediterranean Sea, the Liguro-Provençal Basin (LPB) is a key area for studying passive margins because of its recent formation and abundance of onshore and offshore data. The Nerthe area located in the northern margin of LPB provides the unique continuous Oligo-Miocene deposits contemporaneous of the transition rifting to drifting. However, the age of the deposits remains debated and the link between outcrops and offshore seismic data is poorly constrained. The purpose of this paper is double. First, we intend to propose a new chronostratigraphic frame based on bio- (planktonic foraminifera, calcareous nannofossils) and magneto-stratigraphy. Second, we aim to make, through the integration of new highly time-resolved seismic data and field works, a coherent onshore-offshore link concretized by a 3D geological model. The new temporal and spatial data presented in this paper allow correlating the Oligo-Miocene sequences, defining their geometry and specifying precisely the timing of syn- and post-rift stages. The first marine transgression is now precisely dated latest Chattian within the syn-rift deposits and appears to be synchronous with the first marine deposits in the offshore wells and other marginal basins. The transition from syn-rift to post-rift appears to last 3.3 Ma at maximum, between 21.8 and 18.5 Ma (late Aquitanian to early Burdigalian). It is underlined by two major erosional unconformities bearing a hiatus of around 1 Ma. The post-rift started with a major marine transgression that is now dated from middle Burdigalian, at around 18.5 Ma, as elsewhere in the LPB. Contrarily to recent proposals, the post-rift deposits are widely represented on the northeastern margin of the "Golfe du Lion". There, the subsidence of the margin was low during the syn-rift and the transitional periods and high during the post-rift. The onset of this high post-rift subsidence appears to be synchronous with the slowdown of the Corsica-Sardinia block (CSb) motion.
Accès au document
Lien externe vers le document: |