			$\mathcal{L}_{\mathcal{F}}$			
		DOCUMENT N	ON SELECTIONNE	NUMERO F_5797		
Association Française pour l'Étude des Eaux		Trop spécialisé Sans intérêt Pas de mon domain Pas le temps	e	NOM : MC LE PLOF ME TALLIF DATE ENVOI: DATE RETOUR :- 03/07/89		
LANGUE (S)			DOCUMENT SELECTIO	NNE		
A	Titre de	la revue ou Editeur de l' UTHAMPTON, CMP	ouvrage , CONF. MIT, 19	66165570 88/06, CAMBRIDGE,		
THEME (S) principal A secondaire B Nombre de Références	Date de parution Pages : I Auteur (Début <u>480 P.</u> s) CELIA M.A., BREBBIA C.A	n° 36, Fin FERRAND L.A.,	Pour non spécialiste Y 3 Y 1 X 1 X 3 Pour spécialiste Document Très recommandé Bon document X 3 X 3 Bon document		
Eltre traduit : 9 TETHORE TRANS E (pris dans le	LENHO SCRIPTEL Thésaurus	R(S)	TOPOLOGIE (Micror	BURCESEUS DE PROCESSUS DE COMMENTAIRE résumé de 30 mots environ)		
Nonsula DATATIONE			TENDANCE)	ACMELLES JES MODELES		
SIMULATION			2Der 3D	EN HYDROLOGIE _ DEUR		
PRAVISION			LOPPENENT	D'ALGORITHMES PLUS		
Em sont	FIRRA	NE	FIATBLES ET	PLUS RAPIDES - EXEM.		
from superficients			PLE DE COMPLACE AVEC LES TECHNIQUE			
RECUTERCON	DPE	INTIONNELLE	JOPTIMISAT	NON - NONBREAK EXENTLES		
DIFRUSI	on		J'APPLICATO	V pour Us non itenes		
POLLANON DE NAPPE			Et pour	LES LORS ET RIVIERES		
OPTIMISA	non/					
Multon Multon	ic NO	N STORA				
Rhs Dowelles	EN	Em	la de la companya de			

PREFACE

This book forms part of the edited proceedings of the Seventh International Conference on Computational Methods in Water Resources (formerly Finite Elements in Water Resources), held at the Massachusetts Institute of Technology, USA in June 1988. The conference series originated at Princeton University, USA in 1976 as a forum for researchers in the emerging field of finite element methods for water resources problems. Subsequent meetings were held at Imperial College, UK (1978), University of Mississippi, USA (1980), University of Hannover, FRD (1982), University of Vermont, USA (1984) and the Laboratorio Nacional de Engenharia Civil, Portugal (1986). The name of the ongoing series was modified after the 1986 conference to reflect the increasing diversity of computational techniques presented by participants.

The 1988 proceedings include papers written by authors from more than twenty countries. As in previous years, advances in both computational theory and applications are reported. A wide variety of problems in surface and sub-surface hydrology have been addressed.

The organizers of the MIT meeting wish to express special appreciation to featured lecturers J.A. Cunge, A. Peters, J.F. Sykes and M.F. Wheeler. We also thank those researchers who accepted our invitation to present papers in technical sessions: R.E. Ewing, G. Gambolati, I. Herrera, D.R. Lynch, A.R. Mitchell, S.P. Neuman, H.O. Schiegg, and M. Tanaka. Important contributions to the conference were made by the organizers of the Tidal Flow Forum (W.G. Gray and G.K. Verboom) and the Convection-Diffusion Forum (E.E. Adams and A.M. Baptista) and by K. O'Neill who organized the Special Session on Remote Sensing. The conference series would not be possible without the continuing efforts of C.A. Brebbia, W.G. Gray and G.F. Pinder, who form the permanent organizing committee.

The committee gratefully acknowledges the sponsorship of the National Science Foundation and the U.S. Army Research Office and the endorsements of the American Geophysical Union (AGU) the International Association of Hydraulic Research (IAHR), the National Water Well Association

cations UK cations USA

of illustrations, broadcasting, reproducin data banks.

ther the whole or part of the material is

tion does not imply, even in the absence relevant protective laws and regulations (NWNA), the American Institute of Chemical Engineers (AIChE), the International Society for Computational Methods in Engineering (ISCME), the Society for Computational Simulation (SCS) and the Water Information Center (WIC).

Papers in this volume have been reproduced directly from the material submitted by the authors, who are wholly responsible for them.

M.A. Celia L.A. Ferrand Cambridge (USA) 1988

CONTENTS

3

9

15

21

27

35

45 v.

51

57

SECTION 1 - DEVELOPMENTS IN NUMERICAL METHODS

1A - Numerical Methods for Transport

Stability Analysis of Discrete Approximations of the Advection-Diffusion Equation Through the use of an Ordinary Differential Equation Analogy A.A. Aldama

Solution of the Advection-Diffusion Transport Equation using the Total Derivative and Least Squares Collocation L.R. Bentley, G.F. Pinder and I. Herrera

An Analysis of Some Classes of Petrov-Galerkin and Optimal Test Function Methods E.T. Bouloutas and M.A. Celia

The Cell Analytic-Numerical Method for Solution of the Two-Dimensional Advection-Dispersion Equation O.A. Elnawawy, A.J. Valocchi and A.M. Ougouag

INVITED PAPER Finite Element Techniques for Convective-Diffusive Transport in Porous Media *R.E. Ewing*

INVITED PAPER 3-D Finite Element Transport Models by Upwind Preconditioned Conjugate Gradients G. Pini, G. Gambolati and G. Galeati

The Structure of Mass-Response Functions of Dissolved Species in Hydrologic Transport Volumes A. Rinaldo, A. Bellin and A. Marani

An Advection Control Method for the Solution of Advection-Dispersion Equations Ne-Zheng Sun and Wen-Kang Liang

Non-Diffusive N+2 Degree Upwinding Methods for the Finite Element Solution of the Time Dependent Transport Equation J.J. Westerink, M.E. Cantekin and D. Shea

Characteristic Alternating Direction Implicit Scheme for Advection-Dispersion Equation Yugun Xue and Chunhong Xie	63	Guidelines for the use of Preconditioned Conjugate Gradients in Solving Discretized Potential Flow Problems E.F. Kaasschieter	147
A Zoomable and Adaptable Hidden Fine-Mesh Approach to Solving Advection-Dispersion Equations G.T. Yeh	69	INVITED PAPER Non Linear Instability in Long Time Calculations of a Partial Difference Equation A.R. Mitchell	153
1B - Computational Fluid Dynamics			161
A Taylor Weak Statement CFD Algorithm for Free Surface Hydromechanical Flows A.J. Baker and G.S. Iannelli	77	by the Parallel Application of a Hybrid of the Ritz-, Galerkin- Product Integral Methods N.L. Petrakopoulos	101
Numerical Simulation of the Vortex Shedding Process Past a Circular Cylinder A. Giorgini and G. Alfonsi	83	Fractional Steps and Process Splitting Methods for Industrial Codes J.M. Usseglio-Polater and M.I. Chenin-Mordojovich	167
Numerical Investigation of Turbulent Flow Field in a Curved Duct with an Alternating Pressure Difference Scheme Z.J. Liu, C.G. Gu and Y.M. Miao	89	On the Construction of N-th Order Functions for Complete Interpolation S.Y. Wang, K.K. Hu, P.G. Kramer and S.E. Swartz	173
Turbulent Diffusion Simulation by Implicit Factored Solver using $K-\varepsilon$ Model F. Martelli and V. Michelassi	95	SECTION 2 - TRANSPORT 2A - Solute Transport in Saturated Porous Media	
INVITED PAPER A Boundary Element Investigation of Natural Convection Problems M. Tanaka, K. Kitagawa, C.A. Brebbia and L.C. Wrobel	103	INVITED PAPER Three-Dimensional Adaptive Eulerian-Lagrangian Finite Element Method for Advection-Dispersion R. Cady and S.P. Neuman	183
1C - Numerical Analysis		Computer Modeling of Groundwater Flow Through Porous Media using a Monte-Carlo Simulation Technique	195
A New Family of Shape Functions S.E. Adeff	117	J.S. Loitherstein Dispersion of Contaminants in Saturated Porous Media:	201
Adaptive Collocation for Burgers' Equation M.B. Allen III and M.C. Curran	123	Validation of a Finite-Element Model G.L. Moltyaner	201
Alternative Ways of Treating Domain Integrals in Boundary Elements C.A. Brebbia	129	Modeling Water and Contaminant Transport in Unconfined Aquifers G. Pantelis	207
INVITED PAPER Advances on the Numerical Simulation of Steep Fronts I. Herrera and G. Hernández	139	Accurate Fine-Grid Simulations to Derive Coarse-Grid Models of Fine-Scale Heterogeneities in Porous Media T.F. Russell	213

 $(1,1) \in \mathbb{R}^{n \times n}$

. .

Numerical Experiment with Euler-Lagrange Method for a Pair of Recharge-Pumping Wells S. Sorek	219		Multicomponent Solute Transport with Moving Precipitation/ Dissolution Boundaries J.A. Mundell and D.J. Kirkner	287
On the Use of Particle Tracking Methods for Solute Transport in Porous Media A.F.B. Tompson and D.E. Dougherty	227		The Advantage of High-Order Basis Functions for Modeling Multicomponent Sorption Kinetics J.A. Pedit and C.T. Miller	293
2B - Solute Transport in Unsaturated Porous Media			2D - Heat Transport	
Mass Exchange Between Mobile Fresh Water and Immobile Saline Water in the Unsaturated Zone H. Gvirtzman and M. Magaritz	235		A Finite Element Model of Free Convection in Geological Porous Structures D. Bernard	301
Solution of Saturated-Unsaturated Flow by Finite Element or Finite Difference Methods Combined with Characteristic Technique	241	ř	Radiative Heat Transfer to Flow in a Porous Pipe with Chemical Reaction and Linear Axial Temperature Variation A.R. Bestman	307
Kang-Le Huang Finite Element Simulation of Nitrogen Transformation and Transport during Hysteretic Flow with Air Entrapment	247		Assessment of Thermal Impacts of Discharge Locations using Finite Element Analysis Y.C. Chang and D.P. Galya	313
J.J. Kaluarachchi and J.C. Parker A Characteristic Finite Element Model for Solute Transport • in Saturated-Unsaturated Soil	255		Validation of Finite Element Simulation of the Hydrothermal Behavior of an Artificial Aquifer Against Field Performance H. Daniels	319
Jin-Zhong Yang and Wei-Zhen Zhang 2C - Chemical Processes			Numerical Modeling of Hot Water Storage in Aquifer by Finite Element Method B. Goyeau, J. Gounot and P. Fabrie	325
Solute Transport: Equilibrium vs Non-equilibrium Models <i>R. Abeliuk</i>	263		Modelling the Regional Heat Budget in Aquifers J. Trösch and H. Müller	331
Confrontations Between Computer Simulations and Laboratory Work to Understand Mechanisms Controlling Transport of Mercury	269		A Thermal Energy Storage Model for a Confined Aquifer Yuqun Xue, Chunhong Xie and Qingfen Li	337
rr. Denra		i i	SECTION 3 - HYDROLOGY	
A Quick Algorithm for the Dead-End Pore Concept for Modeling Large-Scale Propagation Processes in Groundwater	275		3A - General Hydrology	
H.M. Leismann, B. Herrling, V. Krenn			Numerical Analysis of Transients in Complex IIydropower	345
Simulation of Groundwater Transport Taking into Account Thermodynamical Reactions	281		Scheme S.A. Furlani and G.J. Corrêa	
B.J. Merkel, J. Grossmann and A. Faust			Some Aspects of Kalman Filtering Application in Hydrologic Time Series Processing M. Markuš and D. Radojević	351

``

A Computer Model for the Estimation of Effluent Standards for Priority Pollutants From a Wastewater Discharge Based Upon Aquatic Life Criterion of the Receiving Stream	357	A Flexible Folyhedron Method with Monotonicity Analysis Shu-yu Wang and Zhang-lin Chen	101
J.R. Nuckols, S.F. Thomson and A.G. Westerman		3D - Software Developments	
Network Model Assessment to Leakage of Fill Dam T. Sato and T. Uno	363	A Software Package for the Computer Aided Design of Sewer Systems W. Bauwens	439
3B - Parameter Estimation		Interactive Design of Irregular Triangular Grids	445
Groundwater Monitoring Network Design H.A. Loaiciga	371	R.F. Henry	451
Adjoint-State and Sensitivity Coefficient Calculation in Multilayer Aquifer System A.H. Lu. C. Wang and W. W-G. Yeb	377	FLOSA - 3FE: Velocity Oriented Three-Dimensional Finite Element Simulator of Groundwater Flow M. Nawalany	401
Identification of IUII Ordinates Through Non-Linear Optimization J.A. Raynal Villasenor and D.F. Campos Aranda	385	Reliable System Software for the Micro-Processor Based Hydrometeorological Network for Real Time Stream Flow and Flood Forecasting in Narmada Basin in India R.S. Varadarajan	459
3C - Optimization			
Numerical Aspects of Simulation and Optimization Models for a Complex Water Resources System Control M. Baošić and B. Djordjević	393		
Optimal Operation of a Reservoir System with Network Flow Algorithm P.B. Correia and M.G. Andrade Filho	399		
Optimization of Water Quality in River Basin I. Dimitrova and J. Kosturkov	405		
Coupling of Unsteady and Nonlinear Groundwater Flow Computations and Optimization Methods A. Heckele and B. Herrling	411		
Reliability Constrained Markov Decision Programming and its Practical Application to the Optimization of Multipurpose Reservoir Regulation Liang Qingfu	417		
Optimal Multiobjective Operational Planning of a Water Resources System S. Soares and M.G. Andrade Filho	423		

÷

Companion Volume

F.

 $\sim 0^{-1}$

A APASI

in and the

N 1997 .z

31.30

- Alexandra - A

Modeling Surface and Sub-surface Flows, Volt 1 of Computational Methods in Water Resources 1988, contains featured lectures by recognised authorities in the field as well as sections on Modeling Saturated and Unsaturated Flowing Porous Media, Multiphase Flow, Stochastic Models, Salt Water Intrusion, Modeling Surface Water Flows such as Tidat Models, Lake and Estuary Models, Open Channel Flow and Sedimentation, and Remote Sensing and Signal Processing for Hydrological Modeling

1.18

2. [SEK (- 05607 - 007 - 5 () 560 0 - 447 - 5651 - 10 - 5 Ein

a calenta a

647

\$1.77

Sec. St

 $\sim k_{D}^{-1}$

A

