Bayesian Belief Networks to Integrate Monitoring Evidence
of Water Distribution System Contamination
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Abstract: A Bayesian belief network (BBN) methodology is proposed for combining evidence to better characterize contamination
events and reduce false positive sensor detections in drinking water distribution systems. A BBN is developed that integrates sensor data
with other validating evidence of contamination scenarios. This network is used to graphically express the causal relationships between
events such as operational changes or a true contaminant release and consequent observable evidence in an example distribution system.
In the BBN methodology proposed here, multiple computer simulations of contaminant transport are used to estimate the prior probabili-
ties of a positive sensor detection. These simulations are run over multiple combinations of possible source locations and initial mass
injections for a conservative solute. This approach provides insight into the effect of uncertainties in source mass and location on the
detection probability of the sensors. In addition, the simulations identify the upstream nodes that are more likely to result in positive
detections. The BBN incorporates the probabilities that result from these simulations, and the network is updated to reflect three

demonstration scenarios—a false positive and two true positive sensor detections.

DOI: 10.1061/(ASCE)0733-9496(2006)132:4(234)

CE Database subject headings: Sensors; Security; Terrorism; Water distribution systems; Potable water; Monitoring; Contamination.

Introduction

There is a great deal of uncertainty in real-time characterization
of water distribution system contamination events. Much of this
uncertainty is due to the lack of targeted sensors, which makes it
necessary to use surrogate water quality parameters to indirectly
measure the presence of a contaminant. A positive sensor detec-
tion can often be validated by other pieces of evidence observed
in a distribution system. This paper proposes a Bayesian belief
network (BBN) methodology for integrating evidence associated
with a potential contamination event.

Drinking water utilities face many challenges in recognizing,
characterizing, and responding to contamination events. Chief
among these is coping with the daunting number of dangerous
chemical, biological, and radiological substances that may be
accidentally or purposefully introduced into a drinking water
system. Furthermore, real-time analytical tools for characterizing
many of these contaminants in situ do not currently exist, or are
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prohibitively expensive (ASCE 2004). As a result, current online
contaminant monitoring system design makes use of surrogate
water quality measures such as total organic carbon, turbidity, pH,
chlorine concentration, and others which may be correlated to
“fingerprint” contamination events (ASCE 2004).

False positive sensor detections pose an important threat to
online contaminant monitoring even when sensors with relatively
“good” false positive rates are installed. For example, assume that
the probability of a contamination event was known a priori to be
0.01%. If a sensor with a 0.3% false positive rate were to take
10,000 measurements, it would return 30 false positives and only
one true positive. This problem will occur for any case where
the true probability of an occurrence is much less than the false
positive rate of the sensor. In reality, the true probability of con-
tamination is likely to be much less and the true false positive
rates much greater than this example (ASCE 2004).

When considered within the context of an entire water collec-
tion, treatment, and distribution system, it is apparent that there
are numerous other system events that could obscure or validate
such a contaminant detection. Related pieces of information such
as physical security alarms, distribution system model topology,
and contaminant measurements by sensors need to be tied in to
expert knowledge of potential contamination scenarios. A BBN
is a useful framework for representing the causal relationships
between events and observations that comprise a contamination
scenario.

Bayesian methodologies, such as BBNs used in this project,
have been used to combine diverse data inputs for numerous
applications including battlefield strategy, optical recognition,
fault detection, advanced driver assistance systems, and sensor
network data fusion (Sanzotta and Sherrill 1997; Karlsson et al.
2002; Liu and Zhang 2002; Coue et al. 2003; Fox et al. 2003).
Bayesian networks have been used to fuse data from multiple
sensor networks in many applications (Beckerman 1992; Brown
et al. 1995; Bonci et al. 2002). In the energy domain, Bayesian
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modeling methods were used to analyze the distribution of the
failure rate at nuclear power plants (Chu 1995). Schlumberger
et al. (2002) used coupled dynamic models with a BBN to assess
the voltage stability limits for part of France’s subsystem and to
identify more efficient rules of operation.

In the battlefield strategy application area, significant research
has been conducted to apply Bayesian networks and decision
trees to support battlefield decision making. The CoRaven system
described by Jones et al. (1998); and Hayes et al. (2000) used a
BBN structure to make inferences from data observations to a
commander’s information requirements. Franzen (1999) modeled
the decision structure of battle damage assessment within a BBN.
Das et al. (2002) presented an approach to battlefield situation
assessment based on the real-time combination of small Bayesian
network components to form a BBN for a specific high-level
scenario. Therrien (2002) used a BBN to model human and
environmental parameters influencing risk assessment and stress
in combat scenarios. Information sources for the BBN included
observations, training, orders, and reports.

Substantial research in the environmental engineering domain
has utilized Bayesian approaches for a number of applications,
but few studies have used BBNs specifically and none have
involved applications to water supply protection as illustrated
here. In groundwater remediation, BBNs coupling an expert
knowledge base with process models have been used to evaluate
the potential of naturally occurring reductive dechlorination at
sites contaminated with TCE (Stiber et al. 1999, 2004a,b). Marcot
(2001) combined expert knowledge with ecological data in a
BBN to model the causal relationships between planning deci-
sions and impacts on at-risk wildlife species habitats. Stow et al.
(2003) compared a BBN approach with two deterministic models
for predicting the effect of nitrogen loading on estuarine chloro-
phyll a concentrations. Murray et al. (2005) predicted health risks
associated with a contamination event using a dynamic disease
model linked with a distribution system flow and transport model.

In the field of drinking water supply, several researchers
have focused on characterizing intentional contamination of dis-
tribution systems, but not with Bayesian methodologies. Nilsson
et al. (2005) simulated the exposure of a population to a deliber-
ate contamination attack using a Monte Carlo approach over a
wide range of uncertain demands and operation scenarios. All-
mann and Carlson (2005) analyzed the intentional introduction,
spread, and detection of several known contaminants in a distri-
bution system. Others including Lee and Deininger (1992),
Kessler et al. (1998), and Ostfeld and Salomons (2004), have
sought to optimize the placement of water monitoring stations in
distribution systems.

Our research seeks to use BBNs to integrate sensors and other
relevant data to better characterize a system for real-time
response. This task is similar to military and studies in other fields
that utilize Bayesian approaches to combine diverse sources of
data and intelligence in a battlefield setting or other response
scenario. This paper presents a BBN approach that integrates
information from multiple sensors with records of operational
changes. The approach is implemented on a hypothetical case
study. Simulations over numerous possible combinations of
upstream locations and source mass values are used to estimate
the probability of a detection given that a contaminant release has
occurred. This probability along with others estimated by expert
judgment define the variables that comprise the BBN. The follow-
ing sections present an introduction to Bayesian belief networks,
a description of the hypothetical case study, a methodology
for implementing the BBN, and a demonstration using the BBN
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Fig. 1. Bayesian belief network structure

to infer knowledge of the system state for three positive sensor
detection scenarios.

Bayesian Belief Networks

Bayes theorem states that

h)P(h
P(h|D) =% (1)

where P(h)=prior probability of & with no knowledge of obser-
vation D; P(D)=prior probability of D with no knowledge of &;
P(h|D)=posterior probability of & after observation D; and
P(D|h)=probability of observation D given that A is true.

The Bayesian prior probability P(h) is updated to a posterior
probability P(k|D) that reflects an observation D. Conceptually,
this updating process mimics the reasoning of people presented
with new information about uncertain phenomena. For a classic
illustration of this idea, presented in The Economist (2000), con-
sider a newborn infant in her first day. After observing her first
sunset, she wishes to determine the probability that the sun will
rise again using Bayes theorem. The infant puts a black marble
and a white marble into a bag to represent her initial estimate that
there is an equal probability that the sun will rise again or not.
Each day that the sun rises, she puts another white marble into the
bag. After one morning, the probability of sunrise increases from
0.5 (1 white marble/2 total marbles) to 0.75 (2 white marbles/3
total marbles). The probability is 0.8 after the second day, 0.833
after the third, and so on until the child has near certainty that the
sun will continue to rise every day. In much the same way, the
prior probability of a hypothesis, P(h) is revised to a posterior
probability after an observation has been made P(k|D).

Bayesian learning in a complex, interconnected system can be
represented with a BBN, which represents the conditional inde-
pendence assumptions among a set of variables, thus specifying
the joint probability distribution. A BBN is typically presented as
a directed acyclic graph with nodes representing variables and
arcs representing assertions of conditional independence. A node
is conditionally independent of its nondescendents. In Fig. 1, vari-
able d can be said to be conditionally independent of variable c,
given a and b. Bayes theorem defines the relationships among
variables. The joint probability for the assignment of any set of
values (xi,...,x,) to the set of variables (X,,...,X,) in a BBN
can be determined by
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Fig. 2. Demand patterns used in distribution system model

n

P(x,, ... x,) = | | P[x,Parents(X,)] 2)

i=1

where Parents(X;)= set of values for preceding nodes in the net-
work. The joint probability of any set of variables can be inferred
from observed values or distributions for any subset of remaining
variables. There are a number of exact and approximate algo-
rithms that have been developed to infer posterior probabilities
for BBNs (Jenson 1996). The work presented in this study utilizes
a generalized variable elimination approach in which posteriors
are derived from the marginal probabilities for a set of variables
in the BBN. Further details on this algorithm are provided by
Cozman (2000); and Dechter (1999).

A powerful attribute of BBNSs is their ability to integrate expert
knowledge with models and data to define both the conditional
independence structure between variables and the associated
probabilities. The BBN can then be recursively updated as new
evidence becomes available, in much the same way that the
newborn infant adds additional white marbles to her bag as she
observes each sunrise. The BBN presented in this study utilizes
expert knowledge to determine the network structure. Prior prob-
abilities were determined using modeling for some nodes and
expert judgment for others.

Application of Bayesian Belief Networks
to Distribution System Case Study

In this section, a BBN methodology is proposed to represent
a distribution system and possible pieces of evidence that might
be available to inform a system operator in the event of a con-
tamination event. Evidence includes sensors and operational
records. The contaminant release is assumed to occur from a
single location at a service connection, hydrant, storage tank, or
other water infrastructure component. The approach is general
and should be readily adaptable to other types of scenarios and
distribution systems.

The distribution system used in this study is a hypothetical
campus-type facility that was created for research, development,
and demonstration purposes only. The relevant water infrastruc-
ture components are extracted from geographical information
system data for the model facility. The distribution system is
modeled with 235 nodes and 261 pipes ranging from 50.8 mm
(2in.) to 304.8 mm (12 in.) in diameter. Water demands are
assigned to nodes based on typical per capita consumption
values in the assortment of buildings that are present in the model

Treatment Plant

Fig. 3. Distribution system model showing location of treatment
plant and sensors

facility. Fig. 2 shows the demand patterns used in the model.
Pipes, pumps, and storage facilities are sized and configured
so that water pressures are between 276 kPa (40 psi) and 552 kPa
(80 psi) and water velocities are less than 1.53 m/s (5 ft/s).
EPANET (Rossman 2000) is used to solve the distribution system
flow and transport equations.

Three sensor locations were identified based on a qualitative
inspection of the model flow patterns in extended time period
hydraulic simulations. Fig. 3 shows a schematic of the distribu-
tion system model and the sensor locations. These locations were
selected from within a limited region of the distribution system
to reduce complexity of the analysis. An attempt was made to
maximize the sensor’s upstream coverage, and distribute sensors
evenly across the target area, however, no rigorous mathematical
optimization was performed. Others have conducted research
into algorithms to determine the optimal placement of sensors
(e.g., Lee and Deininger 1992; Kessler et al. 1998; Ostfeld and
Salomons 2004), which is a topic beyond the scope of this study.

Each sensor was assumed to be capable of identifying con-
taminants from the region of the distribution system upstream of
the sensor’s location. The upstream region of each sensor was
determined by simulating the release of a unit contaminant from
each node in the system and observing which source nodes
resulted in nonzero detections at the sensors. Four mutually
exclusive upstream areas were defined by the overlapping cover-
ages of the downstream sensors. Area 1 is upstream of all three
sensors, Area 2 is upstream of Sensors A and C, Area 3 is up-
stream of Sensors B and C, and Area 4 is only upstream of Sensor
C (Fig. 4). Sensors A and B are upstream of Sensor C and are
completely contained in its coverage area. Therefore there are no
areas defined to be exclusively upstream of A or B but not C.
Sensors were assumed to provide a simple yes/no indication of
the presence of a contaminant above a threshold concentration
with known false positive and false negative rates. These sensors
could be devices that measure the contaminant directly, or they
could measure a surrogate parameter that is then related to the
contaminant through postprocessing using a statistical relation-
ship, learning algorithm (e.g., artificial neural network), cluster-
ing, or other method (ASCE 2004). Surrogate water quality
parameters are not included in this analysis, however, they could
easily be integrated into a BBN as additional evidence nodes.
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Fig. 4. Distribution system showing locations of sensors and upstream areas

A BBN representing the joint probabilities of several contam-
ination scenarios is shown in Fig. 5. The bottom level nodes of
the BBN represent observable evidence such as that provided by
sensors and operational logs. Top-level nodes represent causal
events that are not directly observable. Some of the top nodes
are “true positive” events such as a contaminant release in an
upstream area, while some would be “false positives” such as a
change in operation. The origin of the contaminant release is not
specified and could be intentional or unintentional. These are
simplifications and abstractions of the relevant components that
might exist in an actual distribution system. It is expected that
the “operation change” node would be subdivided into many
individual nodes that each represents the state of a system com-
ponent such as pumps or storage tanks. Additional observable
evidence such as specific threat intelligence could easily be incor-
porated into the BBN through additional nodes. The structure of
the BBN is defined by the topology of the distribution system—
events upstream cause observable evidence downstream. Addi-
tional structural elements such as physical security evidence,

power grid events, hospital diagnosis patterns, and others could
be integrated using expert knowledge of causal relationships
between events and evidence.

Each node of the BBN utilizes a table containing conditional
probabilities of discrete Boolean states given the state of that
node’s parents, or P[x;|Parents(X;)]. For top level nodes, this
table is simply the prior probability of that event, P(x;) and the
prior probability of not that event, P(—x;). Table 1 shows the
matrix of conditional probabilities estimated for Sensor B
given the state of its parent nodes: Contaminant from Area 1,
Contaminant from Area 3, and Operation change. Contaminant
from Area 1 refers to the introduction of a contaminant into the
region that is upstream of all three sensors, and Contaminant from
Area 3 refers to the introduction of a contaminant into the region
that is covered by Sensors B and C (Fig. 4). Operation change
refers to actions such as system flushing, booster pump activation,
valve maintenance, seasonal changes, or others that might cause
false sensor detections. This node could be subdivided and refined
during implementation to reflect further knowledge of system

Contaminant
from Area 3

Contaminant
from Area 2

Contaminant
from Area 1

[ Sensor A ] [ Sensor B ] [ Sensor C ] [ Operation ] <+—

ronss || | 4 Gl
g Events
v
Observable
record Evidence

Fig. 5. Bayesian belief network for distribution system contamination
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Table 1. Matrix of Prior Conditional Probabilities for Sensor B and Its
Parent Nodes

Parent node states Probability of detection

Contaminant ~ Contaminant  Operation Sensor B Sensor B
from area 1 from area 3 change Positive Negative
True False True 0.522 0.478
True False False 0.497 0.503
False True True 0.973 0.0266
False True False 0.972 0.0280
False False True 0.0965 0.9035
False False False 0.0500 0.950

operational characteristics. The relevant operational activities
would be dependent on a specific system’s hydraulic characteris-
tics and the sensor technology used. The number of combinations
of parent node states is 2/, where i=number of parent nodes. For
the case of Sensor B there are eight possible combinations of
parent states. It is not possible for both Contaminant from Area 1
and Contaminant from Area 3 to be “true” since we assume a
single injection scenario.

The prior probabilities for each variable in the network may be
determined in a number of ways. False positive and false negative
rates for the sensor due to internal causes may be provided by
the manufacturer or determined during project implementation.
For this study, the false positive and false negative rates for the
sensors are assumed to be 0.05 and 0.03, respectively. The prior
probability of a contaminant release may be somewhat more
difficult to rationally estimate. In contrast to rare natural phenom-
ena such as severe weather events, intentional terrorist attacks
are not random events with a historical record on which to base
a frequency analysis. Priors for unintentional contamination
events, however, may be estimated based on the historical record,
expectation of infrastructure failures, or other inputs. For this
study, the prior probability of a contaminant release is arbitrarily
assumed to be 0.0001. The prior probability of Operation change
was also assumed to be 0.0001. For a real application, it may be
possible to determine the prior probabilities for operational
changes represented in the BBN from analysis of historical data.

The conditional prior probabilities for observable nodes given
the state of parent nodes can be determined by computer simula-
tion. In this study, the prior probabilities of detection by the
sensors given an upstream release are estimated using repeated
simulations with EPANET. The contaminant is modeled as the
single injection of a pure conservative solute for 6 h using the
mass booster option in EPANET. This release is simulated from
all possible source locations in each of the upstream areas
covered by the sensor, and the initial mass is varied from 0 to 300
in 0.25 g/min increments. The upper limit reflects practical con-
siderations for a likely intentional terrorist attack. The amount of
contaminant that could be concealed at a residential location and
the capacity of a 19.05 mm (3/4 in.) service connection would
likely preclude larger initial mass values. An injection of
300 g/min over 6 h would require a mass of approximately
108 kg of pure solute. We assume a single release scenario, so
multiple injections were not simulated.

The solute concentration is measured at the sensors over the
36 h simulation period for each combination of source mass and
location. This duration was chosen to ensure that the simulation
would capture the peak concentration at each sensor. A positive
detection is assumed to have occurred if the sensor concentration
exceeds an arbitrarily selected threshold of 100 mg/L. The prior

conditional probability of a sensor detection is determined by

ny — FN(n) + FP(n — n,
P(positive|release) = — () (1o = 1) (3)
Mot

where n,= number of simulations that result in a concentration
exceeding the threshold for a single sensor; FN=false
negative rate; FP=false positive rate; and n,=total number of
releases from the upstream area over all locations and initial
mass values. The conditional prior probabilities for operation
change variables, such as P(Operation record|Operation change)
or P(Sensor B|Operation change), are assumed in this study.
However, these conditional priors could be reasonably estimated
by analysis of historical records or additional simulations. The
value of P(Sensor A|Operation change) is estimated to be 0.7,
P(Sensor C|Operation change) is 0.05, and P(Sensor B|Operation
change) is 0.05. These conditional prior probabilities were set to
different values to reflect a closer relationship between Operation
change and Sensor A than the other sensors. This introduces an
additional complexity to the BBN similar to that likely to occur
in a real world application. The conditional prior probabilities
for combinations of Operation change with other parent nodes
are determined by calculating the union of the individual
probabilities, since the individual probabilities are mutually
exclusive. For example, P(Sensor B|C0ntaminant from Area 1,
Operation change) is simply P(Sensor B|Contaminant from
Area 1) OR P(Sensor B|Operation change). Table 1 shows the
conditional prior probabilities for Sensor B.

Results

The BBN is used to explore hypothetical combinations of sensor
detections and other evidence that might occur in a contamination
event. The posterior probability that a contaminant has been
introduced is inferred from changes to observable nodes in the
BBN. When a node is “observed,” its value becomes fixed, and
the probability of that node’s parent(s) is inferred to reflect the
new observation. The posterior probabilities of the causal event
nodes can provide useful guidance for interpreting a positive sen-
sor detection. Because prior probabilities are set to an arbitrarily
low value (0.0001) for the causal event nodes, the change in
probability is used to indicate causality. Three possible scenarios
are explored for illustration purposes below: a false positive and
two true positive detections.

In the first example, Operation record is observed to be “true,”
Sensor A is observed to be “true,” Sensor B is observed to be
“false,” and Sensor C is observed to be “false.” The probability of
the positive sensor detection being caused by Contaminant from
Area 2 is updated from a prior of 0.0001 to a posterior of 0.00047
(Fig. 6). The probabilities of releases in the two other upstream
areas also increase slightly. However, the probability that the
positive sensor detection was caused by Operation change is
updated from a prior of 0.0001 to a posterior of 0.0394. This
posterior value is quite small due to the effect of the very low
prior probability that was assigned to this node. However, the
probability for Operation change increased by a factor of 394
from its prior value, which is a much greater increase than other
causal nodes. Taking the change in probabilities into account, this
result suggests that the sensor detection is a false positive.

In the second example, Operation record is observed to be
“false,” Sensor A is observed to be “true,” Sensor B is observed to
be “false,” and Sensor C is observed to be “true.” The probability
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Contaminant
from Area 2

Contaminant
from Area 1

Contaminant
from Area 3

Contaminant
from Area 4

Operation
change

0.0001->2.9E-5 |} 0.0001->4.7E-4 |{ 0.0001->3.5E-8 |} 0.0001->6.0E-6 |} 0.0001->0.039

v v v
Sensor A Sensor B Sensor C Operation
TRUE FALSE FALSE record
TRUE

Fig. 6. Example of Bayesian belief network updating for false positive sensor detection

of Contaminant from Area 2 is updated from a prior of 0.0001
to a posterior of 0.0201, an increase by a factor of 201 (Fig. 7).
The probability of Operation record decreases for this scenario
from 0.0001 to 7.76 X 1073, This result suggests that the sensor
detection is a true positive.

The change in probability is used to suggest causality where
priors are set to an arbitrarily low value. An analysis was
performed to determine the sensitivity of this change to different
prior probabilities. When the prior for Contaminant from Area 2
is changed from 0.0001 to 0.001, the resulting posterior for the
true positive scenario is 0.175, an increase by a factor of 175.
Further trials with different prior probabilities for this variable
result in a relatively consistent increase in the posterior when
the prior is 0.001 or less. Fig. 8 shows the factor by which the
posterior increases in this sensor detection scenario for different
prior probabilities of Contaminant from Area 2. This result sug-
gests that the change in probability is insensitive to the initial
value for rare events.

The final example shows a less intuitive combination of
evidence in which two sensors are positive and an operation
change has occurred. Sensor A is observed to be “false,” Sensor B
is “true,” Sensor C is “true,” and Operation record is “true.”

The posterior probability for Operation change in this case is
0.00367, a change by a factor of 36.7. The posterior for Contam-
inant from Area 2 is 0.0343, an increase by a factor of 343.
While somewhat less conclusive than the other examples, this
combination of evidence clearly implicates Contaminant from
Area 2 as the most likely source of a true positive detection. This
result is reasonable since Operation change is more closely
related to Sensor A with a higher conditional probability than the
other two sensors.

The methodology proposed in the previous sections also
provides insight into the probability that a contaminant released
at a given node would be detected by a downstream sensor. The
probability for each upstream node was determined using
summing positive detections by a sensor over all initial mass
values while keeping location constant. This information would
be useful in identifying the location of a contaminant release in
response to a positive sensor detection. Fig. 9 shows the estimated
probability of contaminant detection at Sensor C for releases at
each upstream location. In this case the probabilities for each
upstream location are all relatively high. It is likely that a model
of a contaminant in a more complex full-scale system would
result in a larger range of probability values.

Contaminant Contaminant
from Area 1 from Area 2
0.0001->0.0050 || 0.0001>0.021

Contaminant
from Area 3
0.0001->5.3E-5

Contaminant Operation
from Area 4 change
0.0001->0.0018 || 0.0001->7.8E-5

v v \ 4
Sensor A Sensor B Sensor C Operation
TRUE FALSE TRUE record
FALSE

Fig. 7. Example of Bayesian belief network updating for true positive sensor detection
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Discussion

This work suggests that BBNs have the potential to be a useful
tool for interpreting the sometimes confusing information from
online contaminant monitoring and other sources that characterize
a water system. However, there are additional challenges that
require further research. The spatial and temporal characteristics
of the sensor data and distribution system model are not directly
expressed in the BBN presented here. This approach does not, for
example, provide information regarding the exact location within
an upstream region that a contaminant was released. Others such
as Shang et al. (2002) and Zierolf et al. (1998) have presented
more rigorous mathematical approaches for particle backtracking
that utilize timing information to link output to source input. It is
possible that the location probability map shown in Fig. 9 could
be further refined in a real-time response scenario by accounting
for the time difference between sensor detections. The timing
of these observations could be used with real-time flow data to
pinpoint the location of an attack. Fig. 9 is also beneficial in that
it identifies nodes that are not well covered by the sensor network.
This information could be useful for network planning purposes.
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Fig. 9. Estimated probability of contaminant detection at Sensor C
for releases at each location

Timing would also be relevant to the probability that observ-
ations are evidence of the same causal event. In addition, only
contamination from a single ideal source is represented in the
BBN demonstrated here. Further research is needed to extend
this work beyond these simplifying assumptions to additional
contamination scenarios, additional reactive solutes, larger and
more complex distribution systems, and additional case studies.
Future work will also explore the use of simulated data streams to
update the Bayesian network in real time.

Very little computational time was required to solve the
Bayesian belief network once the prior probabilities were defined.
The contaminant simulation to calculate prior probabilities
required approximately 80,000 runs, which took 2.5 h to com-
plete using a desktop PC. Future implementations of this method
could easily make use of a parallel computing cluster to reduce
the computational time.

The BBN presented here is used as a framework for expressing
the complex causal relationships and conditional probabilities that
comprise contamination scenarios. A challenge in implementing
this approach would be to imagine contamination scenarios that
cover the wide range of possible vulnerabilities. These scenarios
would ideally be the product of a diverse group of experts,
engineers, operators, responders, and others that have detailed
knowledge of the system and current research in vulnerability
analysis. However, the possibility would always exist that a
terrorist could attack a water system in an unpredictable way
that would not be characterized accurately by the BBN. During
implementation, observed evidence would likely be augmented
by data from field testing kits that could be deployed to a region
of the distribution system. The evidence from these tests could be
integrated into the BBN simply by adding additional observation
nodes.

An approach for estimating some of the prior probabilities is
shown in this study. However, there are additional variables for
which probabilities must either be determined through expert
judgment, regression, or additional modeling. The BBN presented
here is intended to be a framework for expressing the conditional
relationships between system variables and making inferences in
response to observations. It is expected that any implemented
BBN would be refined and augmented by real-time data to define
both probabilities and network structure. Mining these relation-
ships and patterns in real-time data is an area of active research
that will likely complement the work presented here.

Conclusions

This study proposes a BBN methodology for expressing complex
causal relationships among the events and observations that com-
prise contamination scenarios in water distribution systems. These
scenarios can be better understood when explicitly visualized in a
graphical probabilistic model such as a BBN. The methodology
uses distribution system simulations to estimate conditional prior
probabilities for contaminant introductions. Application of the
approach to a hypothetical system illustrated how data from sen-
sors and other sources can be interpreted with a BBN to better
characterize a water system and distinguish between a routine
false positive sensor detection and a true system contamination
event. This approach has the potential to be incorporated into both
security planning and real-time response actions.
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