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Abstract: Sampling design~SD! for water distribution systems~WDS! is an important issue, previously addressed by various resea
and practitioners. Generally, SD has one of several purposes. The aim of the methodologies developed and presented here
optimal set of network locations for pressure loggers, which will be used to collect data for the calibration of a WDS model. First
SD approaches for WDS are reviewed. Then SD is formulated as a multiobjective optimization problem. Two SD models are
to solve this problem, both using genetic algorithms~GA! as search engines. The first model is based on a single-objective GA~SOGA!
approach in which two objectives are combined into one using appropriate weights. The second model uses a multiobjective G~MOGA!
approach based on Pareto ranking. Both SD models are applied to two case studies~literature and real-life problems!. The results sho
several advantages and one disadvantage of the MOGA model when compared to SOGA. A comparison of the MOGA SD mod
to the results of several published SD models shows that the Pareto optimal front obtained using MOGA acts as an envelope to
fronts obtained using previously published SD models.
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Introduction

Hydraulic simulation models are widely used by planners, w
utility personnel, consultants and others involved in analysis
sign, operation, and maintenance of water distribution syst
To make the models useful they must be calibrated~Walski 1983!.
This is achieved by determining various parameters that, w
input into a hydraulic simulation model, yield a reasonable m
between measured and predicted pressures and flows in th
work ~Shamir and Howard 1968!.

In general, an optimal sampling design~SD! procedure fo
water distribution systems~WDS! model calibration should ai
to determine:~1! which WDS model predicted variables~pres-
sures, flows, etc.! to observe;~2! where in the WDS to observ
them;~3! when to observe them~duration and frequency!; and~4!
under what conditions to observe them~e.g., demand conditio
pumps on/off!. The objective is to collect data that, when used
calibration of the model, will yield the best results. In the
model developed and presented here, it is assumed that~1!, ~3!,
and~4! are known in advance. Hence efforts are concentrate
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determining the optimal set of WDS measurement locations
First, background information regarding existing SD

proaches for WDS is given. After that, SD objectives and
straints are defined. Two new SD models are then develope
presented. This is followed by application of both SD mode
two case studies. Finally, a summary is provided and rele
conclusions are drawn.

Background

Walski ~1983! was among the first to suggest where in a WD
collect data on pressures and flows for model calibration. He
gested observing pressures near points of high demand, pref
on the perimeter of the skeletonized network, away from w
sources. Yu and Powell~1994! formulated the so-called me
placement problem for state estimation of WDS, their main
jectives being maximization of estimation accuracy, and min
zation of metering cost. A method employing dynamic analys
the covariance matrix of state variables and decision-tree
niques was developed. Ferreri et al.~1994! suggested the sele
tion of measurement points by analyzing the relative sensitiv
of nodal heads with respect to roughness calibration param
Instead of formulating an optimization problem, they ranked
WDS nodes according to their overall relative sensitivity.

Bush and Uber~1998! developed three new, relatively sim
yet efficient SD methods: max-sum, weighted sum, and max
methods. All are based on analysis of the Jacobian matrix
were derived from so-calledD-optimality criteria, but do not d
rectly solve theD-optimal SD problem. A SD solution is given
the form of ranked WDS nodes. Piller et al.~1999! formulated the
SD problem with the objective of minimizing the influence
measurement errors in the state vector estimation subject
constraint that the Jacobian matrix is of maximum rank.

problem was solved using a greedy algorithm which starts from
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an empty solution set and sequentially selects and adds me
ment locations, one at each algorithm step.

Meier and Barkdoll~2000! were the first to use genetic alg
rithms ~GA! to solve the optimal SD problem. Their object
was to find a~fixed size! set of calibration test locations th
produces non-negligible flow rates in as large a portion of
WDS as possible. Three new SD approaches were sugges
de Schaetzen et al.~2000!. The first two approaches are based
the shortest path algorithm and rank potential measurement
tions. The third approach solves the optimization problem b
on maximization of Shannon’s entropy. The SD cost is also t
into account, either as a model constraint or as a second obj
~in which case the two objectives are normalized and comb
using weight coefficients!. Most recently, Lansey et al.~2001!
developed a sensitivity-based heuristic SD procedure, which
a first order second moment~FOSM! model to propagate unce
tainties in measurements to calibrated WDS model predictio

Uncertainty Modeling in Calibration of Water
Distribution System Models

Calibration Problem

The problem of optimal sampling design is closely related to
of calibration. Calibration of a hydraulic model is formulated h
as an optimization problem with an objective function of
weighted least squares type

Minimize E = r TWr s1d

where E=scalar objective function value to be minimized;W
=weight matrix ~No rows and columns!; r =y*−y(a)=vector of
No residuals~errors!, i.e., differences between observedy* and
model predicted variablesy(a); a=vector ofNa unknown calibra
tion parameters; T=vector/matrix transpose operator;No

=number of measurement data in both spatial and tempora
mains; andNa=number of calibration parameters. There are
sets of constraints:~1! implicit type constraints, consisting
equations representing the analyzed WDS hydraulic mode
~2! explicit type constraints used to impose maximum and m
mum bounds on the calibration parameter values.

Uncertainty Quantification

During the calibration process, errors~i.e., uncertainties! in
pressure/flow measurements are propagated to calibration p
eters, resulting in uncertain model predictions. Quantificatio
the parameter and prediction uncertainties presented here is
on linear regression theory, a method known in the literatu
the FOSM model~Bard 1974!. Using this model, a first-ord
approximation of the parameter variance–covariance matrixCova
~henceforth referred to as the parameter covariance matr! is
defined as

Cova = s2 · sJTWJd−1 s2d

wheres2=calculated error variance;J=Jacobian matrix of deriva
tives ]yi /]ak ~i =1, . . . ,No; k=1, . . . ,Na!, i.e., of derivatives ca
culated for model predictionsy(a) that spatially and temporal
correspond to measurementsy*. When all measurements have
same error indicated by standard deviationsy, Eq. ~2! can be

approximated as~Lansey et al. 2001!

JOU
-

y

-

d

Cova = sy
2 · sJTJd−1 s3d

Uncertainty in the calibration parameter values determined
dicated by parameter variances. The variance of theith calibration
parameter is estimated as the value of theith diagonal element o
matrix Cova.

The WDS model prediction variance-covariance matrixCovz
~henceforth, the prediction covariance matrix! can be estimated
~Bard 1974!

Covz = Jz ·Cova ·Jz
T s4d

whereJz=Jacobian matrix of derivatives]zi /]ak ~i =1, . . . ,Nz; k
=1, . . . ,Na!; and z=vector of Nz model predictions of interes
i.e., vector consisting of chosen model predictionsy whose un
certainties are being evaluated. The variance of theith mode
prediction is estimated as the value of theith diagonal element o
matrix Covz.

Sampling Design for Water Distribution Systems
Model Calibration

Assumptions

In the SD approach presented, the following assumptions
simplifications are made:~1! the only source of errors~uncertain
ties! is imprecise measurement, i.e., the WDS hydraulic m
and all its input parameters~except pipe roughnesses! are as
sumed error free;~2! the only measurement devices that are
ject to optimal placement are pressure loggers, which can on
placed at a numbersNmld of previously identified network node
~3! all pressure loggers have identical measurement accu
defined by standard deviationsh; ~4! measurement data are c
lected to calibrate the steady-state hydraulic model under mu
loading conditions for unknown pipe roughness coefficients o
~5! calibrated model accuracy is evaluated by calculating n
pressure uncertainties only; and~6! the only unknowns in th
optimal SD analysis are pressure logger locations: all other
necessary to define the SD problem are known.

Even though some of these assumptions may seem qu
strictive, they are actually not. For example, all pressure log
do not need to have the same accuracy for the methodolog
work. Where pressure loggers have different accuracies, E~2!
should be used instead of Eq.~3! to evaluate matrixCova. Also,
the methodologies can easily be extended to determine op
flow measurement locations in addition to pressure measure
locations, and for any calibration parameter~not just pipe rough
ness coefficients!.

Objectives and Constraints

There are two distinct objectives:~1! maximization of calibrate
model accuracy by minimization of calibrated model predic
uncertainty and~2! minimization of total costs associated w
SD. A tradeoff between the two objectives exists.

Here, the calibration accuracy objective is formulated as m
mization of the average absolute model prediction uncertain

Minimize F1 =
1

Nz
o
i=1

Nz

Covz,ii
1/2 s5d

whereCovz,ii = ith diagonal element of the prediction covaria

matrix Covz defined by Eq.~4! andNz=number of model predic-
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tions ~nodal pressures here! in both spatial and temporal doma
for which uncertainties are being evaluated.

From Eqs.~3! and ~4! it is obvious that evaluation ofF1 re-
quires calculation of the Jacobian matricesJ and Jz. Note tha
matrix Jz needs to be calculated only once, prior to the optim
tion process. UnlikeJz, matrix J depends on the selection
measurement locations, and therefore needs constant up
during the search process. However, this does not mean th
rivatives in matrixJ have to be calculated for update. MatrixJ
can be simply constructed from the full Jacobian matrixJml by
copying the rows corresponding to the currently analyzed s
measurement locations.Jml is the Jacobian matrix with rows co
responding to allNml analyzed sampling design locations a
needs to be calculated only once, prior to the optimization
cess. Elements of the Jacobian matrixJml ~and Jz, if different
from Jml! are calculated using the sensitivity equation method
the best calibration parameter estimates available. Details o
method can be found in Bush and Uber~1998! and Kapelan
~2002!.

The second objective addresses the problem of SD costs
sisting of capital and operational components. Capital costs
include: investment in new measurement equipment or on
work associated with installation of measurement devices. O
tional costs may relate to labor involved in conducting field te
equipment maintenance, equipment insurance, electricity, etc
particular case it may be possible to estimate costs relative
curately. However, it is very difficult to generalize them, and
rive a general expression to estimate total cost. Here, the fo
ing surrogate measure is used as the total SD cost~Yu and Powel
1994; de Schaetzen et al. 2000!:

Minimize F2 = N s6d

In addition to the two aforementioned objectives, the follow
constraint is used:

Nmin ø N ø Nmax s7d

where N=actual number of measurement devices;Nmin

=minimum required number of devicessNmin.0d; Nmax

=maximum allowed number of devices;NmaxøNml; and Nml

=total number of measurement locations to be analyzed
solving a particular SD problem. Note that if allNml locations are
used to evaluate calibration accuracy thenJz=Jml.

An optimal SD solution should lead to the collection of d
that can be used to formulate and solve well-posed calibr
problems. The well-posed solution is one that has a Jacobia
trix of full rank ~Carrera and Neuman 1986!. However, checkin
this is computationally very demanding, and therefore is not
here during the search process. Instead, a constraint requi
minimum number of measurement devicesNmin is introduced to
ensure that the solution obtained will lead to, at least, an ov
termined calibration problem. Since overdeterminedness
guarantee that the SD solution obtained will produce a well-p
calibration problem, once the search process is stopped, a si
value decomposition analysis~Press et al. 1990! is performed to
verify a posteriori the optimal SD solution. Constraint~7! on the
maximum number of measurement devicesNmax is introduced a
a surrogate measure for the SD budget.

Sampling Design Procedure

Assuming only pressures are measured, the following proce
should be used for solving the optimal SD problem:~1! define the

optimization model input data, by specifying: the set ofNml po-
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tential pressure measurement locations, the duration~e.g., 24 h!
and frequency~e.g., 15 min! of pressure measurements~for ex-
tended period simulation calibration! or the number of characte
istic loading conditions~for multiple steady-state simulation ca
bration!, the number, grouping, and estimated values of pote
calibration parameters~to estimate values of parameters use e
any existing measurements or engineering judgment!, and othe
data ~network configuration, demands, etc.!; ~2! calculate ele
ments of the full Jacobian matrixJml; if different from Jml, cal-
culate matrixJz too; and~3! solve the optimal SD problem usi
the signle objective genetric algorithm~SOGA! or multiobjective
genetic algorithm~MOGA! SD models.

Single Objective Genetic Algorithm Sampling Design
Model

Problem Formulation
In the SOGA approach, the SD objective functions are first
malized. To apply single-objective optimization, all normali
functions must be either maximized or minimized. Since the
library used here maximizes objectives by default, all objec
were normalized following that logic. First objectiveF1 defined
by Eq. ~5! is normalized

Maximize f1 =
oi=1

Nz Covz,ml,ii
1/2

oi=1

Nz Covz,ii
1/2

s8d

where Covz,ml,ii = ith diagonal element of the model predict
covariance matrixCovz calculated forJ=Jml; i.e., for the cas
where all analyzed WDS locations are being observed. No
ization of the second objectiveF2 defined by Eq.~6! is done a
follows:

Maximize f2 = 1 −
N

Nml
s9d

Since the standard GA cannot handle constraints directly, a
alty function is introduced to handle constraint~7!. The penalty
function Pe is introduced as

Pe =5pc1sNmin − Nd, N , Nmin

pc2sN − Nmaxd, N . Nmax

0, Nmin ø N ø Nmax
6 s10d

where pc1 and pc2=arbitrarily chosen, positive penalty consta
The penalty function Pe always has non-negative values. Fi
the SOGA model objectiveO becomes

MaximizeO = So
i=1

2

wi f i
pD1/p

− Pe s11d

where p=norm order ~typically 1, 2, or ~!; and w1 and w2

=weights used to express preferences, chosen to satisfy th
dition oi=1

2 wi =1.

Single Objective Genetic Algorithm Solution
A standard GA is used to solve the optimal single-objective
problem. The GA software library used here was developed a
Univ. of Exeter ~Morley et al. 2001!. The library has a larg
number of built-in features: modeling of generational or ste
state GAs; support for various coding schemes~binary, real, inte
ger!; various selection schemes~uniform random, rank biase

roulette wheel, tournament, etc.!; various replacement schemes
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~random, by rank, weakest, etc.!; various crossover operato
~simple one point, uniform random, arithmetic, etc.!; various mu
tation operators~random by gene, random nonuniform, etc.!; op-
tional use of elitism; etc.

When solving the optimal SD problem, two types of GA c
ing are used here:~1! binary and~2! integer. For binary coding
each of theNml potential SD locations~network nodes! is repre-
sented as a single gene, with gene values of one or zero u
indicate whether a measurement device is/is not placed at
ticular location~e.g., network node!. When using integer codin
each of theNmax measurement devices is represented as a s
gene. The gene value indexes the network location at which
particular device is to be placed, with a zero value indicating
the device is not to be placed anywhere. A drawback is that
may occur in which two or more genes have the same in
value, suggesting that two or more measurement devices s
be placed at the same location. This is corrected as follows~1!
when calculating the calibration accuracy objective, it is assu
that only one device is used to collect data at the correspo
location, i.e., all extra devices are ignored; and~2! when calcu
lating the cost objective, all measurement devices are taken
account. This way, solutions with multiple measurement dev
linked to the same location are made less desirable since the
more while having no additional benefit on calibration accur

In the work presented here, binary coding is used whenNmax

=Nml, this being typical of theoretical SD analysis on relativ
small, artificial networks. Conversely, integer coding is prefe
to binary whenNmax!Nml, this being.typical of SD analysis o
large, real-life networks where only a small subset of locat
may be available for use. In this case, the most critical, se
part of constraint~7!, i.e., NøNmax, is handled automatical
leading to solutions with zero penalty~not the case for binar
coding!. As a consequence, the GA search becomes more
tive.

Multiobjective Genetic Algorithm Sampling Design
Model

Problem Formulation
Instead of transforming the two-objective problem into a sin
objective format, a true, two-objective approach can be take
the MOGA approach, the two objectives are treated separ
These are:~1! the calibration accuracy objective defined by
~8!, and~2! SD cost defined by the surrogate measure in Eq~6!.
The calibration accuracy objective is kept in a normalized fo
as suggested by Bush and Uber~1998!.

Once the MOGA problem is solved, a whole set of opti
solutions defining the tradeoff surface or Pareto-optimal fro
available. Constraint~7! is then used to identify the feasible
gion of the Pareto-optimal front.

Multiobjective Genetic Algorithm Solution
Several MOGA approaches exist today~Veldhuizen and Lamon
1998!. The MOGA model presented here is based on Fonsec
Fleming~1993!. Generally speaking, a MOGA optimization run
similar to a standard GA run, the most fundamental differe
being in the way chromosome fitness values are calculated
to limited space available, only a brief overview of the Fons
and Fleming’s MOGA model is presented here~more details ca

be found in the reference!.

JOU
t

Chromosome Coding.The two chromosome coding schem
used in the SOGA SD model, are also used in the MOGA m

Fitness Evaluation. In the MOGA model, the value of each o
jective function is calculated for each chromosome in the p
lation. Once these values are obtained, chromosomes are
according to Pareto domination rules~Goldberg 1989!. Briefly,
Solution A is Pareto inferior to Solution B if B is partially bet
than A, i.e., if B is better than or equal to A in all functi
dimensions and better in at least one function dimension. O
ously, definition of better depends on whether the function is
minimized or maximized. Further, Solution A is said to be su
rior to B if and only if B is inferior to A. Finally, Solutions A an
B are noninferior to one another if B is neither inferior nor su
rior to A. Application of the Pareto domination rules effectiv
divides the GA population into a number of subpopulations,
containing a number of noninferior chromosomes.

In Fonseca and Fleming’s model, each chromosome i
signed a rank value equal to one plus the number of chromos
in the same population that are dominating that chromos
Therefore, all solutions in a Pareto optimal front~i.e., subpopula
tion! are assigned a rank of one. The chromosome fitness va
then calculated as the reciprocal of its rank~indicating that fitte
solutions have smaller rank values!. However, assigning ea
chromosome a fitness value based on Pareto ranking alone
not guarantee that the Pareto optimal set will be unifo
sampled, i.e., that chromosomes will be uniformly distribu
along the Pareto optimal front. To maintain population diver
the fitness value is reduced according to the number of
chromosomes in the proximity, i.e., according to the numbe
chromosomes occupying the same “niche.” This number is kn
as the chromosome niche count, and is evaluated for each
mosome by calculating its distance~in the multiobjective spac!
to all other chromosomes in the population and comparing
distances to a prespecified value~called niching radius!. If the
distance between two chromosomes is smaller than the ni
radius, the two chromosomes are considered to share the
niche.

Mating Restriction. To avoid excessive competition betwe
distant members of the population~i.e., production of lethals!,
Fonseca and Fleming~1993! suggested mating restriction. T
concept is based on the idea that two individuals located a
extremes of a search space are unlikely to form a highly fit
vidual. The implementation of mating restriction follows the lo
of niching. An individual~chromosome! will be able to mate with
another, if and only if the distance between those two individ
is less than the mating restriction radius~another MOGA mode
parameter!.

Selection Operator.In Fonseca and Fleming’s~1993! MOGA
approach, a selection operator called stochastic universal
pling ~SUS! is used. In a manner similar to proportionate se
tion, SUS uses a biased roulette wheel. However, in SUS
wheel is only spun once. The remaining individuals to be sele
are then chosen by moving sequentially around the wheel
predesignated amount. The use of this incremental step m
that the mating process is positionally biased between indivi
that are situated alongside each other in the old population
cording to Fonseca and Fleming, the SUS operator is optim
terms of both bias and spread. They also claim that SUS is
ferred to standard roulette wheel selection because it has

stochastic errors and, thus, lower genetic drift.
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Crossover and Mutation Operators.The same crossover a
mutation operators used in the SOGA SD model are used h

Case Studies

Case Study 1: Literature Sampling Design Problem

Problem Description
This case study tests the performance of the two suggeste
approaches on an artificial network known in the literature a
“Anytown” model ~Walski et al. 1987!. The model has previous
been used to test different calibration models~Ormsbee 1989
Lansey and Basnet 1991; Ferreri et al. 1994!. The specific objec
tives of this case study are:~1! to apply and verify both SOG
and MOGA SD models;~2! to compare SOGA and MOGA S
models and identify their advantages and disadvantages;~3! to
compare results obtained by the MOGA SD model to results
tained using other published SD models~Ferreri et al. 1994; Bus
and Uber 1998; de Schaetzen et al. 2000!.

The objective of the SD analysis presented here is to d
mine the best network locations for collection of pressure dat
calibrating, as accurately as possible, the Anytown hydr
model~see Fig. 1!. The steady-state hydraulic model is calibra
for five loading conditions, with model and calibration data ta
from Ormsbee~1989!.

A total of Nml=16 nodes~Nodes 20–170! are considered a
possible locations for pressure observations. Fixed head
~reservoir and two tanks! are excluded from the analysis. The
optimization problem is solved for the calibration of the hydra
model for a total ofNa=5 grouped Hazen–Williams~HW! pipe
roughness coefficients@the first four parameters are as define
Ormsbee~1989! while the fifth parameter represents the grou
fifth and sixth parameters from the same paper#. True paramete
values are used to obtain the full Jacobian matrixJml. The matrix
has a total ofNo=80 rows~16 nodes times 5 loading condition!
andNa=5 columns. Pressure uncertainties are evaluated at aNml

analyzed SD locationssJz=Jmld.

Case 1.1: Application of Single Objective Genetic Algorith
Model. Analyses were carried out to verify the SOGA SD mo
The optimal solution is compared to the best solution found b
enumeration method for two equally weighted SD objecti

Fig. 1. Case 1: Anytown network layout
Sensitivity of the SOGA model with respect to weights and the

194 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / MARCH 2005
order of the Euclidian norm used, are also investigated.
A typical SOGA run and optimal solution are illustrated us

the following parameters:w1=0.5, w2=0.5, Nmin=1, Nmax=16, p
=1, and pc1=pc2=10. The following GA configuration was use
steady state with population size 50, simple one-point cros
with probability 0.90, and a mutation operator with probab
0.05.

The optimal solution found is to placeN=5 pressure loggers
the following nodes: 40, 90, 110, 120, and 160. The optimal v
of the first normalized function isf1=0.699, the value of th
second normalized function isf2=0.688, and the value of th
overall objective isO=0.693.

Enumeration was then used to solve the same problem. A
of 65,535=216−1 possible SD solutions were evaluated. The
solution identified is identical to that obtained using the SO
model.

To analyze the sensitivity of the SOGA optimal solution w
respect to weightw1 ~w2 is always 1−w1! and the norm orderp, a
series of SOGA runs were performed. The results are presen
Table 1. The following are noted:~1! as the weightw1 increase
~andw2 decreases!, parameter accuracy becomes more impo
than SD cost, causing the optimal number of SD location
increase;~2! the optimal solution is sensitive tow1 andp; ~3! for
p=2 andp=20 and a relatively large weight increment of 0.1,
behavior of the Euclidian norm emphasizes extreme valuesf1

and f2, leading to the identification of two extreme SD soluti
~N=Nmin=1 andN=Nmax=16, see bottom part of Table 1!.

Case 1.2: Application of Multiobjective Genetic Algorith
Model. Analyses were carried out to verify the MOGA S
model for the same SD problem. The following MOG
parameters/settings were used: binary coding, population siz
uniform crossover with probability 0.7, mutation probability 0
niche radius 0.02, and mating restriction radius 0.10.

The optimal Pareto front found by MOGA is shown in Fig
and contains 17 SD solutions. Details about each solutio
given in Table 2. Since the solutions forN=0 and N=16 are
trivial, the optimal solution should, based on one’s preference
chosen from the other 15 available solutions. Note that each
on the Pareto-optimal front can be identified by solving the
evant single objective SD problem. For example, the point o
Pareto front corresponding toN=5 can be identified by runnin
the SOGA SD model with the following set of parameters:w1

=1.0, w2=0.0, Nmin=5, Nmax=5, andp=1. The results from th
MOGA SD model were thus verified by formulating and solv
16 independent SOGA SD problems, the results confirming
all points on the MOGA Pareto optimal front are corre
determined.

Finally, from Fig. 2 and Table 2 the following can be not
~1! a comparatively small number of network nodes need t
observed to achieve relatively high calibration accuracy, i.e
significantly reduce calibration uncertainty.~2! The most fre
quently chosen, i.e., best pressure measurement location
those near locations of high demand and far from fixed-
nodes, as previously suggested by Walski~1983!. Indeed, accord
ing to the largest number of “ones” in Table 2~see also last row i
Table 3!, the best pressure measurement location is Node 90
node has the highest sum of demands for all five loading c
tions and is relatively far from all three fixed-head nodes.
same is true for Node 120. On the other hand, even though
the second highest total demand, Node 60 is not a desirable
surement location since it is very close to Tank A. Furtherm

Node 170 is desirable even with a relatively low total demand,
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sign
mainly due to its location on the network edge, relatively far f
all fixed head nodes.~3! The optimal set forN measurement lo
cations is not always a superset of that forN-1 locations~e.g.,
optimal locations forN=4 are 40, 90, 110, and 120, while optim
locations forN=3 are 90, 120, and 140!. Therefore, SD mode
that use ranking~Ferreri et al. 1994; Bush and Uber 1998! or any
other methodology in which the optimal set ofN measuremen
locations is derived from the optimal set ofN-1 locations~Yu and
Powell 1994; Piller et al. 1999! may fail to identify the best so
lution.

Case 1.3: Comparison of Different Sampling Desi
Models. Analyses are carried out to compare solutions obta
by the MOGA model to equivalent solutions obtained by:~1!
three Bush and Uber~1998! models;~2! the de Schaetzen et
~2000! entropy model; and~3! the Ferreri et al.~1994! model.

The three Bush and Uber~1998! SD models~max-sum, max
min, and weighted-sum! were developed with theD-optimality
criteria in mind. However, rather than maximizing a determin
of the curvature matrix directly, all models try to achieve

Table 1. Case 1.1: Optimal Single Objective Genetic Algorithm Sol

p w1 O f1 f2 N 20 30 40 5

1 0.0 0.938 — 0.938 1

0.1 0.848 0.043 0.938 1 0 0 0 0

0.2 0.759 0.043 0.938 1 0 0 0 0

0.3 0.697 0.574 0.750 4 0 0 1 0

0.4 0.692 0.699 0.688 5 0 0 1 0

0.5 0.693 0.699 0.688 5 0 0 1 0

0.6 0.708 0.806 0.563 7 0 0 1 0

0.7 0.748 0.908 0.375 10 0 0 1 1

0.8 0.811 0.967 0.188 13 0 0 1 1

0.9 0.900 0.993 0.063 15 0 1 1 1

1.0 1.000 1.000 0.000 16 1 1 1 1

2 0.0 0.938 — 0.938 1

0.1–0.4 0.89–0.73 0.043 0.938 1 0 0 0 0

0.5–1.0 0.71–1.00 1.000 0.000 16 1 1 1 1

20 0.0 0.938 — 0.938 1

0.1–0.2 0.93–0.92 0.043 0.938 1 0 0 0 0

0.3–1.0 0.94–1.00 1.000 0.000 16 1 1 1 1

Note: “1” means that node should be monitored, “0” opposite.

Fig. 2. Cases 1.2 and 1.3: Comparison of different sampling de
model solutions
JOU
indirectly using a simplified, very fast, numerical procedure
be fully compatible with the Bush and Uber approach, the
Jacobian matrix is normalized here as originally suggested b
authors.

The de Schaetzen et al.~2000! entropy model solves the op
mal SD problem using standard GAs. Conceptually, it is
similar to the SOGA SD model. The main difference is in
formulation of the first objective, with calibration accuracy
dressed indirectly by maximizing an entropy measure. The
tropy model was originally developed and tested for calibratio
a steady-state hydraulic model using a single loading cond
However, the Anytown model analyzed here has five loading
ditions. To overcome this, each element of the full Jacobian
trix ~corresponding to a potential pressure measurement loc
and calibration parameter! used for the entropy calculations
created by summation of corresponding absolute pressure
tivities for all loading conditions.

The Ferreri et al.~1994! SD model is also based on the dir
analysis of the full Jacobian matrix and is similar to the max-
model of Bush and Uber~1998!. As with the de Schaetzen et
~2000! model, it was originally developed for a steady-state
draulic model with a single loading condition. Consequently
ements of the full Jacobian matrix were calculated here by
ming up corresponding absolute pressure sensitivities fo
loading conditions.

Comparisons of the best solutions obtained using differen
models is done by:~1! comparison of the ranking of analyz
measurement locations and~2! comparison of relevant Pare
fronts for different SD solutions.

While all the Bush and Uber~1998! models and the Ferreri
al. ~1994! model directly rank measurement locations, other m
els do not. To aid comparisons, the optimal measurement
tions obtained by the MOGA model are ranked according to
frequency of occurrence in the Pareto-optimal front. The s
approach was used for the de Schaetzen et al.~2000! entropy
model once the Pareto-optimal front was identified by sol

for Different Values ofp andw1

Network node ID

70 80 90 100 110 120 130 140 150 160

Any node

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 1 1 0 0 0 0 0

0 0 1 0 1 1 0 0 0 1 0

0 0 1 0 1 1 0 0 0 1 0

0 0 1 1 1 1 0 0 0 1 1

0 0 1 1 1 1 1 1 0 1 1

1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

Any node

0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1

Any node

0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1
utions

0 60

0

0

0

0

0

0

0

1

1

1

0

1

0

1

multiple GA optimization problems. Results of the comparisons
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are presented in Table 3. The following can be noted:~1! Optimal
ranking of possible measurement locations differs with the
model used. However, most models identified Nodes 90 and
as the two best measurement locations.~2! The maximum numbe
of measurement locations that can be ranked by the de Sch
et al. ~2000! entropy model is equal to the number of calibra
parameters, which is why only the best five locations are ra
here, i.e., all other nodes have the same rank.

Further comparison of the best SD solutions from diffe
models is made using Pareto fronts. If a particular SD m
produces ranked measurement locations, it is assumed th
optimal solution forN measurement locations contains theN
highest ranked locations. Results of the model comparison
presented in Fig. 2. The following can be noted:~1! The Pareto
front obtained by the MOGA model is the optimal one, i.e
represents an envelope of the best solutions obtained usi
other models.~2! The Pareto front of the Bush and Uber~1998!
max-sum model is, in this particular case, in the closest a
ment with the MOGA Pareto-optimal front.~3! The Pareto fron
of the Bush and Uber~1998! max-min model is, generally, th
worst. ~4! The performance of the Ferreri et al.~1994! model is

Table 2. Case 1.2: Multiobjective Genetic Algorithm Pareto-Optima

f1 F2 20 30 40 50 60 70 80

0.000 0 0 0 0 0 0 0 0

0.043 1 0 0 0 0 0 0 0

0.173 2 0 0 0 0 0 0 0

0.319 3 0 0 0 0 0 0 0

0.574 4 0 0 1 0 0 0 0

0.699 5 0 0 1 0 0 0 0

0.757 6 0 0 1 0 0 0 0

0.806 7 0 0 1 0 0 0 0

0.846 8 0 0 1 1 0 0 0

0.880 9 0 0 1 1 0 0 0

0.908 10 0 0 1 1 0 0 0

0.932 11 0 0 1 1 0 1 0

0.950 12 0 0 1 1 0 1 0

0.967 13 0 0 1 1 1 1 0

0.982 14 0 0 1 1 1 1 1

0.993 15 0 1 1 1 1 1 1

1.000 16 1 1 1 1 1 1 1

Note: “1” means that node should be monitored, “0” opposite.

Table 3. Case 1.3: Ranking of Measurement Locations for Differen

Single objective genetic algorithm model/
Node ID 20 30 40 50 6

Bush and Uber~1998!
max-sum

14 13 5 6 1

Bush and Uber~1998!
max-min

16 14 12 10 1

Bush and Uber~1998!
Weighted-Sum

15 14 9 10 1

Ferreri et al.
~1994!

15 13 10 9 1

de Schaetzen et al.
~2000!

6 6 3 6 6

Multiobjective genetic algorithm 16 15 3 8
196 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / MARCH 2005
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fairly average and is similar to that of the Bush and U
weighted-sum~1998! model. This is no surprise, since the t
models are similarly formulated.~5! As noted above, the de Sch
etzen et al.~2000! entropy model solution ranks only five no
trivial Pareto-front points. However, the points identified ar
excellent agreement with the corresponding points from
MOGA solution. ~6! As the number of measurement locati
increases, the Pareto-optimal fronts of all models are, gene
less different from each other.

Case Study 2: Real-Life Sampling Design Problem

Problem Description

This case study aims to test the performance of the suggest
approaches on a real WDS. Specifically, the objectives are:~1! to
apply and verify use of the proposed SOGA and MOGA mo
on a real WDS network problem and~2! to compare optimal S
solutions obtained by the SOGA model to solutions suggeste
an expert practitioner.

t Points

etwork nodes

100 110 120 130 140 150 160

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 1 0 1 0 0 0

0 1 1 0 0 0 0 0

0 1 1 0 0 0 1 0

0 1 1 0 0 0 1 1

1 1 1 0 0 0 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 1 1

1 1 1 1 1 0 1 1

1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

pling Design Model Solutions

0 80 90 100 110 120 130 140 150 160

1 8 1 12 3 2 10 7 9 15

3 9 1 8 15 5 3 7 6 2

2 8 1 11 6 2 5 7 4 13

1 7 4 12 2 1 5 6 8 14

6 2 6 4 1 6 6 6 5 6

11 14 1 7 3 2 9 9 12 6
l Fron

N
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0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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0 7
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The SD problem investigated is the calibration of the hydra
model of a real United Kingdom WDS, studied previously by
Schaetzen~2000!. The general layout is presented in Fig. 3. T
WDS covers approximately 6 km2, with a population of aroun
4,500. Ground levels vary from 54 to 200 m above ordina
datum. Model demands are predominantly domestic with s
commercial users to the east. The system is supplied by g
from a service reservoir~see “Source” in Fig. 3! and includes tw
pressure reducing valves~PRVs! in the south. The majority o
pipes are cast iron or ductile iron. A normal water use field
was carried out on June 29 1994, with an estimated averag
mand of 14.4 L/S. Based on all available information, anEPA-
NET ~Rossman 2000! hydraulic model was constructed conta
ing one tank, 451 nodes, 497 pipes, and two PRVs.

A total of 32 loggers were initially used to observe pressure
the system. Evidence of obvious anomalies~e.g., nodal head
higher than the corresponding reservoir level! led to the exclusio
of data collected by four loggers. Locations of the remaining
pressure loggers are depicted in Fig. 3~marked with solid tri

Fig. 3. Case 2: Optima
angles!, and are hereafter referred to as the expert’s choice.

JOU
The network is calibrated as a multiple loading condi
steady-state hydraulic model. The three characteristic loa
conditions analyzed are:~1! maximum demand hours8 a.m.d; ~2!
average demand hours3 p.m.d, and ~3! minimum demand hou
s3 a.m.d. Sampling design analyses are carried out to collect n
pressure data for calibrating the model for unknown HW
roughness coefficients.

Two cases are analyzed here. First, the single-objective
lem is solved for a fixed number ofN=28 pressure measurem
locations. This is done for comparison of the best SOGA m
solution to that suggested by the expert. In the second cas
MOGA model is used to solve the multiobjective SD problem
both cases, pressure uncertainties are evaluated at all analyz
locationssJz=Jmld.

Case 2.1: Comparison of Single Objective Genetic Algorit
Solution to Expert’s Choice.Sampling design analyses are c
ried out to compare the expert’s choice forN=28 pressure me

ure measurement locations
l press
surement locations~see Fig. 3! with the corresponding set of 28
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optimal locations obtained using the SOGA model.
A total of Nml=210 ~out of 451! network nodes were analyz

as potential pressure measurement locations leading to a
number of possible solutions equal tos 210

28
d<531034. These

nodes were restricted to those pipes for which calibration
possible using the expert’s choice of measurement locations
on pipes upstream of logger locations. Without this restric
meaningful comparison of expert and SOGA sampling des
would not be possible. The drawback associated with this
proach is that the restricted selection of nodes artificially
proves the expert’s choice of measurement locations by putt
relatively large number of devices on locations near the net
boundaries. However, it will be shown that even in such co
tions it is possible to identify a SOGA solution that is better t
that suggested by the expert.

It is assumed that the hydraulic model will, once relevant
are collected, be calibrated forNa=10 calibration parameters~see
Table 4!. Initially, the idea was to define a larger number of c
bration parameters~up to one per pipe!. However, preliminar
analysis showed that under the demand conditions analyzed
roughness coefficients had to be grouped to gain enough info
tion ~from measurements!. Therefore, HW pipe roughness coe
cients were grouped using the “American” criterion~de Schaetze
2000!, according to their material~i.e., lining! and diameter. I
this particular case, this was correct since the ages of pipes w
a group were approximately the same. When estimating pa
eter values, it was assumed that existing pressure measure
are not available, since they were not available when the ex
choice of measurement locations was made. Therefore, ca
tion parameter values, shown in Table 4, were estimated
engineering judgment based on other information available.

Once estimated, parameter values were used to define
Jacobian matrixJml which is a fundamental matrix for any S
analysis. Here, the matrix has a total ofNo=630 rows~Nx=210
nodes timesNt=3 loading conditions! and Na=10 columns. Al
potential pressure loggers are assumed to be of similar acc
with a standard deviation ofsh=1.0 m.

The following parameters were used in all SD runs:Nmin

Table 4. Case 2: Calibration Parameter Values

Parameter
ID

Original
material Lining

1 Cast iron None

2 Cast iron None

3 Cast iron None

4 Cast iron None

5 Ductile iron Cemen

6 Ductile iron Cemen

7 Ductile iron Cemen

8 Cast iron Epoxy

9 Cast iron Epoxy

10 Medium density polyethylene None

11 Medium density polyethylene None

12 Medium density polyethylene None

13 Polyvinyl chloride None

14 Polyvinyl chloride None
aParameter does not exist in this case.
bEstimated value.
=Nmax=28, w1=1, w2=0, andp=1. The GA settings used were:
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steady-state GA, integer coding, population size 200, allow
run for Ngen=20,000 generations, simple one-point crossover
probability 0.90, and mutation probability 0.05. Multiple GA ru
were carried out using different randomly created initial pop
tions. At the end, the best solution was selected. Note that d
the large size of the optimization problem search space, solu
found should be treated as suboptimal, i.e., there is no gua
that the global optimum is identified.

The set of 28 optimal pressure measurement locations is
sented, together with the expert’s equivalent choice, in Fig. 3
can be seen, some clustering of measurement locations o
This is mainly a consequence of:~1! the chosen parameter grou
ing; ~2! the locations of sensitive~e.g., high demand! nodes; an
~3! possible correlation among sensitivities.

The comparison between the expert’s choice and the op
sampling design is documented numerically in Table 5. The
mal SOGA solution is clearly better than the expert’s choic
measurement locations, as indicated by several metrics. O
basis of calibrated model pressure uncertainty, the SOGA d
is 22% better than the expert’s.

Case 2.2: Application of Multiobjective Genetic Algorith
Model. Analyses were carried out to apply and verify the MO
SD model using a real problem. The aim was to determine
mal locations for the collection of pressure data to be used la
calibrating a multiple loading condition steady-state hydra
model.

It is assumed that the network model will, once pressure
are collected, be calibrated for unknown HW pipe roughnes
efficients. The HW coefficients were grouped using the s
grouping criterion as in Case 2.1, leading toNa=14 unknown
calibration parameters~see Table 4!. The number of paramet
groups is larger here than in the previous case since all ne
junctions sNml=451d are considered as potential locations
pressure loggers.

Unlike Case 2.1, when determining values of the calibra
parameters, it was assumed that pressure data were availa
the 28 measurement locations forming the expert’s choice. T

Diameter
~mm!

Case 2.1
Hazen–Williams~HW!

roughness
coefficient

Case 2.2
HW

roughnes
coefficient

76 50 25.7

102 50 46.9

152 55 40.6

254 60 63.2

100 100 101.7

150 100 98.3

250 110 111.0

76 90 94.7

102 —a 100b

73 —a 120b

101 —a 125b

145 130 132.

102 —a 125b

152 130 130.2
t

t

t

fore, values for 10 of the 14 parameters were identified by cali-
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brating the hydraulic model for the three characteristic loa
conditions using this existing pressure data~Kapelan 2002!. The
other four parameters~9, 10, 11, and 13! were estimated usin
engineering judgment and other available information. Once
termined, calibration parameter values~see Table 4! were used in
the calculation of the full Jacobian matrixJml.

To solve the optimal SD problem, multiple MOGA runs w
carried out using randomly created initial populations. Note
due to the extremely large search space~order of 1046!, solutions
should be treated as suboptimal, i.e., there is no guarantee th
Pareto-optimal front is identified. The following model setti
were used in all optimization runs: integer coding, population
100, uniform crossover with probability 0.7, mutation probab
0.9, niche radius 0.05, and mating restriction radius 0.25. All
were stopped after 10,000 generations. Finally, note that in
case, typical MOGA runs took approximately 2 h~on a 3 GHz PC
computer! to converge.

The best Pareto front identified forN betweenNmin=10 and
Nmax=30 is presented in Fig. 4. For each point on the Pa
optimal front, a corresponding set of optimal locations for p
sure loggers exists, which are not shown here due to lim
space. From the Pareto front, an optimal SD solution can b
lected by either fixing the number of measurement deviceN
according to the budget limit, or by specifying the maxim

Table 5. Case 2.1: Comparison of Sampling Designs

Metric Expert design

Relative calibration
accuracyf1 @see Eq.~8!#

0.338

Average pressure
prediction uncertaintyF1

~m! @see Eq.~5!#

0.27

Maximum pressure
prediction uncertainty
~i.e., square root of the
largest diagonal element
of Covz! ~m!

1.50

Trace~i.e., sum of the
diagonal elements! of
Covz sm2d

88.8

Fig. 4. Case 2.2: Pareto-optimal multiobjective genetic algorit
solution
JOU
allowed pressure uncertaintysF1d.
Fig. 4 shows that for the number and grouping of calibra

parameters defined here, only 11 pressure loggers~a total of 33
pressure measurements! are necessary to achieve average pres
prediction uncertainty below 1.0 m. The 11 optimal locations
presented in Fig. 3, which shows that the logger locations
reasonably well distributed throughout the network.

Summary and Conclusions

The objectives and constraints used to solve the problem of
mal SD for calibration of WDS models are first identified. T
two conflicting objectives are:~1! maximize calibration accura
by minimizing some overall model prediction or parameter un
tainty measure and~2! minimize the total SD cost. Two new S
methods are then presented. In the first, the two objective
normalized and the optimal SD transformed into a single o
tive problem, which is then solved using a standard, SOGA
the second, the SD problem is solved as a true multiobje
problem using MOGA based on Pareto ranking. Both SD m
odologies were verified on case studies including both liter
and real-life problems.

From the case studies, the main conclusions when comp
SOGA and MOGA SD models are:~1! SOGA can detect on
optimal solution in a single GA run while MOGA can detec
whole set of ~Pareto! optimal solutions, i.e., it can detect t
whole tradeoff surface. Consequently, multiple SOGA runs
necessary to obtain the same level of information that ca
obtained from a single MOGA run.~2! When SOGA is used
preferences toward different objectives need to be specifie
fore a model run, while in MOGA preferences can be spec
after a run, thereby allowing much greater flexibility for decis
making.~3! A penalty function must be implemented in SOGA
handle relevant constraints, this being unnecessary in MO
Typically, penalty functions make the search more difficult.~4!
The main drawback of the MOGA model when compared
SOGA is that it requires additional search parameters whos
ues need to be tuned for optimal performance.

The main conclusions in comparing the MOGA SD mo
solution against SD model solutions from the literature~Ferreri e
al. 1994; Bush and Uber 1998; de Schaetzen et al. 2000! are:~1!
The MOGA SD model is preferred since it addresses expl

Best single objective
genetic algorithm sdesign

Relative
improvemen

~%!

0.423 25

0.21 22

0.97 35

53.8 39
the calibrated model accuracy using a model prediction uncer-
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tainty measure rather than implicitly using entropy~de Schaetze
et al. 2000! or some sensitivity measure~Ferreri et al. 1994; Bus
and Uber 1998!. Consequently, the MOGA model identifies
best tradeoff curve, this being an envelope of equivalent cu
obtained from the other SD models mentioned above.~2! The
MOGA model is preferred to ranking type methods~Ferreri et al
1994; Bush and Uber 1998! because the optimal SD forN mea-
surement points is not always a superset of the optimal SD
N-1 points. Therefore, SD models that use ranking, or other m
odologies, in which the optimal set forN locations is derive
from the set forN-1 locations~Yu and Powell 1994; Piller et a
1999! may fail to identify the optimal SD solution.~3! When
compared to other published SD models, the obvious drawba
the MOGA ~and SOGA! model is the computation requireme
~see Case 2.2!. This is the price that must be paid for relativ
accurate, direct evaluation of the relevant uncertainties~typically
including matrix inversion or determinant calculation!. This may
be an obstacle when analyzing large real network models,
cially with large numbers of calibration parameters. However,
envisaged that with constant increases in computational p
this will be less of a problem in the future.
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Notation

The following symbols are used in this paper:
a 5 vector of calibration parameters;

Cova 5 parameter variance–covariance matrix;
Covz 5 model prediction variance–covariance matrix;

E 5 calibration objective value;
F1 5 first sampling design objective;

F1,ml 5 value ofF1 assuming that all analyzed locations are
monitored;

F2 5 second sampling design objective;
f1 5 normalized first sampling design objective;
f2 5 normalized second sampling design objective;
J 5 Jacobian matrix;

Jml 5 full Jacobian matrix~all locations monitored!;
Jz 5 prediction Jacobian matrix;
N 5 actual number of measurement devices;

Na 5 number of calibration parameters;
Nmax 5 maximum allowed number of measurement device
Nmin 5 minimum number of measurement devices;
Nml 5 number of analyzed sampling design locations;
No 5 number of observations~i.e., measurements!;
Nz 5 number of model predictions for whom uncertaintie

are evaluated;
p 5 Euclidian norm order;
r 5 residual vector;
s 5 calculated error standard deviation;

W 5 calibration weight matrix;
y 5 model predictions vector;
y* 5 measurement vector;
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z 5 vector of model predictions of interest to optimal
sampling design;

sh 5 standard deviation of measured pressure; and
sy 5 standard deviation measured valuey*.
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