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Abstract: Sampling desigitSD) for water distribution system@VDS) is an important issue, previously addressed by various researchers
and practitioners. Generally, SD has one of several purposes. The aim of the methodologies developed and presented here is to find t
optimal set of network locations for pressure loggers, which will be used to collect data for the calibration of a WDS model. First, existing
SD approaches for WDS are reviewed. Then SD is formulated as a multiobjective optimization problem. Two SD models are developec
to solve this problem, both using genetic algorith(@\) as search engines. The first model is based on a single-objecti6 GBA)

approach in which two objectives are combined into one using appropriate weights. The second model uses a multiobjdDEAA
approach based on Pareto ranking. Both SD models are applied to two case @itedidsre and real-life problemsThe results show

several advantages and one disadvantage of the MOGA model when compared to SOGA. A comparison of the MOGA SD model solutior
to the results of several published SD models shows that the Pareto optimal front obtained using MOGA acts as an envelope to the Pare
fronts obtained using previously published SD models.
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Introduction determining the optimal set of WDS measurement locations.
First, background information regarding existing SD ap-

Hydraulic simulation models are widely used by planners, water proaches for WDS is given. After that, SD objectives and con-
utility personnel, consultants and others involved in analysis, de- straints are defined. Two new SD models are then developed and
sign, operation, and maintenance of water distribution systems.presented. This is followed by application of both SD models to
To make the models useful they must be calibrdtelski 1983. two case studies. Finally, a summary is provided and relevant
This is achieved by determining various parameters that, whenconclusions are drawn.
input into a hydraulic simulation model, yield a reasonable match
between measured and predicted pressures and flows in the net-
work (Shamir and Howard 1968

In general, an optimal sampling desig8D) procedure for
water distribution system@VDS) model calibration should aim
to determine:(1) which WDS model predicted variabldpres-
sures, flows, etg.to observe;2) where in the WDS to observe
them;(3) when to observe therfduration and frequengyand(4)
under what conditions to observe thémg., demand condition,
pumps on/off. The objective is to collect data that, when used for
calibration of the model, will yield the best results. In the SD
model developed and presented here, it is assumedhaB),
and(4) are known in advance. Hence efforts are concentrated on

Background

Walski (1983 was among the first to suggest where in a WDS to
collect data on pressures and flows for model calibration. He sug-
gested observing pressures near points of high demand, preferably
on the perimeter of the skeletonized network, away from water
sources. Yu and Powell1994 formulated the so-called meter
placement problem for state estimation of WDS, their main ob-
jectives being maximization of estimation accuracy, and minimi-
zation of metering cost. A method employing dynamic analysis of
the covariance matrix of state variables and decision-tree tech-

niques was developed. Ferreri et @994 suggested the selec-
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an empty solution set and sequentially selects and adds measure- Cov, = 05 NELN) €)
ment locations, one at each algorithm step. o ) ) . o
Meier and Barkdoll(2000 were the first to use genetic algo- U_ncertamty in the callbrqtlon parameter_values deter_mme_d is in-
rithms (GA) to solve the optimal SD problem. Their objective dicated by parameter variances. The variance oftthealibration
was to find a(fixed sizé set of calibration test locations that Parameter is estimated as the value ofithediagonal element of
produces non-negligible flow rates in as large a portion of the Matrix Cov,. o _ _ _
WDS as possible. Three new SD approaches were suggested by 1he WDS model prediction variance-covariance maGov,
de Schaetzen et a2000). The first two approaches are based on (henceforth, the prediction covariance matigan be estimated as
the shortest path algorithm and rank potential measurement loca(Bard 1974
tions. The third approach solves the optimization problem based T
on maximization of Shannon’s entropy. The SD cost is also taken Cov,=J,-Cov,-J, (4)
into account, either as a model constraint or as a second objectiveyhere J,=Jacobian matrix of derivativeaz./da, (i=1,... N,; k
(in which case the two objectives are normalized and combined=1 ... N.); and z=vector of N, model predictions of interest,

using weight coefficienis Most recently, Lansey et al200J) i.e., vector consisting of chosen model predictignahose un-
developed a sensitivity-based heuristic SD procedure, which usescertainties are being evaluated. The variance of ithemodel

a first order second momeffOSM) model to propagate uncer-  prediction is estimated as the value of ftte diagonal element of
tainties in measurements to calibrated WDS model predictions. matrix Cov,.

Uncertainty Modeling in Calibration of Water Sampling Design for Water Distribution Systems
Distribution System Models Model Calibration
Calibration Problem Assumptions

The problem of optimal sampling design is closely related to that In the SD approach presented, the following assumptions and
of calibration. Calibration of a hydraulic model is formulated here simplifications are madeé1) the only source of error@incertain-
as an optimization problem with an objective function of the ties) is imprecise measurement, i.e., the WDS hydraulic model

weighted least squares type and all its input parametergexcept pipe roughnesgeare as-

sumed error free(2) the only measurement devices that are sub-
Minimize E = r "Wr (1) ject to optimal placement are pressure loggers, which can only be

placed at a numbeiN,,) of previously identified network nodes;

where E=scalar objective function value to be minimized (3) all pressure loggers have identical measurement accuracies

=weight matrix (N, rows and columns r =y*-y(a)=vector of defined by standard deviatiar),; (4) measurement data are col-

N, residuals(errorg, i.e., differences between observetl and lected to calibrate the steady-state hydraulic model under multiple

model predicted variablega); a=vector ofN, unknown calibra- loading conditions for unknown pipe roughness coefficients only;

tion parameters; T=vector/matrix transpose operatorN, (5) calibrated model accuracy is evaluated by calculating nodal

=number of measurement data in both spatial and temporal do-pressure uncertainties only; arifl) the only unknowns in the
mains; and\,=number of calibration parameters. There are two optimal SD analysis are pressure logger locations: all other data
sets of constraints{1l) implicit type constraints, consisting of necessary to define the SD problem are known.

equations representing the analyzed WDS hydraulic model and Even though some of these assumptions may seem quite re-
(2) explicit type constraints used to impose maximum and mini- strictive, they are actually not. For example, all pressure loggers
mum bounds on the calibration parameter values. do not need to have the same accuracy for the methodologies to
work. Where pressure loggers have different accuracies(Zq.
should be used instead of E@) to evaluate matrixCov,. Also,

the methodologies can easily be extended to determine optimal
During the calibration process, erroge., uncertainties in flow measurement locations in addition to pressure measurement
pressure/flow measurements are propagated to calibration paramlocations, and for any calibration parametgot just pipe rough-
eters, resulting in uncertain model predictions. Quantification of ness coefficienjs

the parameter and prediction uncertainties presented here is based

on linear regression theory, a method known in the literature as
the FOSM model(Bard 1974. Using this model, a first-order

Uncertainty Quantification

Objectives and Constraints

approximation of the parameter variance—covariance maiix, There are two distinct objectivegl) maximization of calibrated
(henceforth referred to as the parameter covariance mdtrix ~ model accuracy by minimization of calibrated model prediction
defined as uncertainty and2) minimization of total costs associated with
SD. A tradeoff between the two objectives exists.
Cov,=¢*-(J"'WJ)™* 2 Here, the calibration accuracy objective is formulated as mini-

mization of the average absolute model prediction uncertainty
wheres?=calculated error variancd;=Jacobian matrix of deriva-
tives dyi/day (i=1,... Ny k=1,... N,), i.e., of derivatives cal-
culated for model predictiong(a) that spatially and temporally
correspond to measurements When all measurements have the
same error indicated by standard deviatiep) Eg. (2) can be whereCov, ; =ith diagonal element of the prediction covariance
approximated aglLansey et al. 2001 matrix Cov, defined by Eq(4) andN,=number of model predic-

N.
1 zZ
Minimize F, = ﬁz Covi/? (5)

Z,ii
zi=1
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tions (nodal pressures heri both spatial and temporal domains tential pressure measurement locations, the durdgan, 24 h

for which uncertainties are being evaluated. and frequencye.g., 15 min of pressure measuremeritsr ex-
From Eqgs.(3) and (4) it is obvious that evaluation of; re- tended period simulation calibratipor the number of character-
quires calculation of the Jacobian matricksand J,. Note that istic loading conditiongfor multiple steady-state simulation cali-

matrix J, needs to be calculated only once, prior to the optimiza- bration, the number, grouping, and estimated values of potential
tion process. Unlikel,, matrix J depends on the selection of calibration parameter$o estimate values of parameters use either
measurement locations, and therefore needs constant updatingny existing measurements or engineering judgimemtd other
during the search process. However, this does not mean that dedata (network configuration, demands, etc(2) calculate ele-
rivatives in matrixJ have to be calculated for update. Mattx ments of the full Jacobian matri,,; if different from J,,, cal-

can be simply constructed from the full Jacobian mafjx by culate matrixJ, too; and(3) solve the optimal SD problem using
copying the rows corresponding to the currently analyzed set of the signle objective genetric algorithtBOGA) or multiobjective
measurement locationd,, is the Jacobian matrix with rows cor-  genetic algorithm{MOGA) SD models.

responding to allN,, analyzed sampling design locations and
needs to be calculated only once, prior to the optimization pro-
cess. Elements of the Jacobian matijy (and J,, if different
from J,,,) are calculated using the sensitivity equation method for
the best calibration parameter estimates available. Details of this

method can be found in Bush and Ube998 and Kapelan In the SOGA approach, the SD objective functions are first nor-

(2002. . . PR A i
The second objective addresses the problem of SD costs, Con_rnallzed. To apply single-objective optimization, all normalized

sisting of capital and operational components. Caoital costs ma functions must be either maximized or minimized. Since the GA
incluc?e' invepstment in pnew measurerFr)]ent o .ui rrl?ent or On_Sitglibrary used here maximizes objectives by default, all objectives
o o . quip . were normalized following that logic. First objectivg defined
work associated with installation of measurement devices. Opera-by Eq. (5) is normalized
tional costs may relate to labor involved in conducting field tests, '
equipment maintenance, equipment insurance, electricity, etc. In a ENZ Covt2
i=1

Single Objective Genetic Algorithm Sampling Design
Model

Problem Formulation

particular case it may be possible to estimate costs relatively ac- Maximize f. = Sz T amii (8)
i - : 1= N
curately. However, it is very difficult to generalize them, and de- > Cov}/2
rive a general expression to estimate total cost. Here, the follow- =1 ’
ing surrogate measure is used as the total SD(&@sand Powell  where Cov, ,; =ith diagonal element of the model prediction
1994; de Schaetzen et al. 2000 covariance matrixCov, calculated ford=J,,; i.e., for the case

where all analyzed WDS locations are being observed. Normal-
ization of the second objectivie, defined by Eq(6) is done as

In addition to the two aforementioned objectives, the following follows:

constraint is used:

Minimize F,=N (6)

- N
Ny < N < Ny 7) Maximize f,=1 - No, 9
where N=actual number of measurement deviceb,, Since the standard GA cannot handle constraints directly, a pen-

=minimum  required number of devicesNmin>0); Nmay alty function is introduced to handle constraii. The penalty
=maximum allowed number of deviceN,.x=Nm; and N, function Pe is introduced as

=total number of measurement locations to be analyzed when
solving a particular SD problem. Note that if &}, locations are pPCi(Nmin=N), N < Npin
used to evaluate calibration accuracy tlerJ,,. - -

An optimal SD solution should lead to the collection of data Pe =) PON = Nova, N> Norex 0
that can be used to formulate and solve well-posed calibration
problems. The well-posed solution is one that has a Jacobian mawhere pg and pg=arbitrarily chosen, positive penalty constants.
trix of full rank (Carrera and Neuman 1986-1owever, checking The penalty function Pe always has non-negative values. Finally,
this is computationally very demanding, and therefore is not done the SOGA model objectiv® becomes
here during the search process. Instead, a constraint requiring a 5 o
minimum number of measurement devidgs;, is introduced to _ _ D
ensure that the solution obtained will lead to, at least, an overde- Maximize O = (21 Wi fi) - Pe
termined calibration problem. Since overdeterminedness is no =
guarantee that the SD solution obtained will produce a well-posedwhere p=norm order (typically 1, 2, or «); and w; and w,
calibration problem, once the search process is stopped, a singular weights used to express preferences, chosen to satisfy the con-
value decomposition analysi{Press et al. 1990s performed to dition 2 w;=1.
verify a posteriorithe optimal SD solution. Constraifif) on the
maximum number of measurement devites, is introduced as  Single Objective Genetic Algorithm Solution
a surrogate measure for the SD budget. A standard GA is used to solve the optimal single-objective SD
problem. The GA software library used here was developed at the
Univ. of Exeter(Morley et al. 2001 The library has a large
number of built-in features: modeling of generational or steady-
Assuming only pressures are measured, the following procedurestate GAs; support for various coding scherftagary, real, inte-
should be used for solving the optimal SD probléf):define the gen; various selection schemdsniform random, rank biased,
optimization model input data, by specifying: the setN\yf, po- roulette wheel, tournament, etcvarious replacement schemes

0, Nmin = N =< N;ax

(11)

Sampling Design Procedure
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(random, by rank, weakest, etcvarious crossover operators Chromosome Coding.The two chromosome coding schemes

(simple one point, uniform random, arithmetic, gtearious mu- used in the SOGA SD model, are also used in the MOGA model.

tation operatorgrandom by gene, random nonuniform, &top-

tional use of elitism; etc. Fitness Evaluation. In the MOGA model, the value of each ob-
When solving the optimal SD problem, two types of GA cod- Jective function is calculated for each chromosome in the popu-

ing are used hergd) binary and(2) integer. For binary coding, ~ lation. Once these values. are obtained, chromosomes are ranked

each of theN,, potential SD locationgnetwork nodesis repre- ~ according to Pareto domination ruléSoldberg 1982 Briefly,

sented as a single gene, with gene values of one or zero used tolution Ais Pareto inferior to Solution B if B is partially better

indicate whether a measurement device isfis not placed at a parihan A, i.e., if B is better than or equal to A in all function

ticular location(e.g., network node When using integer coding, glm?nzlgpr?'t%nndo?itéftre:rn d:t (Ieen%st :r?e r:‘é?ﬁg?tnhs:{n ggf(')?jn.' %bgl_:_
each of theN,,,, measurement devices is represented as a single us’y, detinit _ pends on wn . unction 1s
. . : minimized or maximized. Further, Solution A is said to be supe-
gene. The gene value indexes the network location at which that . : e . .
. o . S rior to B if and only if B is inferior to A. Finally, Solutions A and
particular device is to be placed, with a zero value indicating that

the device i t to be placed h A drawback is that B are noninferior to one another if B is neither inferior nor supe-
€ device Is not to be placed anywhere. A drawback IS that Cases; 1, a Application of the Pareto domination rules effectively
may occur in which two or more genes have the same intege

. ) Mdivides the GA population into a number of subpopulations, each
value, suggesting that two or more measurement devices ShOUIdcontaining a number of noninferior chromosomes

be placed at t.he same I.ocat.ion. This is corrgctgd a; .foll()]z\)s: In Fonseca and Fleming's model, each chromosome is as-
when calculating t_he _callbrat|on accuracy objective, it is assum_ed signed a rank value equal to one plus the number of chromosomes
that only one device is used to collect data at the correspondingin the same population that are dominating that chromosome.
location, i.e., all extra devices are ignored; &@iwhen calcu-  Therefore, all solutions in a Pareto optimal frahe., subpopula-
lating the cost objective, all measurement devices are taken intotion) are assigned a rank of one. The chromosome fitness value is
account. This way, solutions with multiple measurement devices then calculated as the reciprocal of its rairidicating that fitter
linked to the same location are made less desirable since they coséolutions have smaller rank valyesHowever, assigning each
more while having no additional benefit on calibration accuracy. chromosome a fitness value based on Pareto ranking alone, does
In the work presented here, binary coding is used WNgg, not guarantee that the Pareto optimal set will be uniformly
=N, this being typical of theoretical SD analysis on relatively sampled, i.e., that chromosomes will be uniformly distributed
small, artificial networks. Conversely, integer coding is preferred along the Pareto optimal front. To maintain population diversity,
to binary whenN,.<N,,, this being.typical of SD analysis on the fitness value is reduced according to the number of other
large, real-life networks where only a small subset of locations chromosomes in the proximity, i.e., according to the number of
may be available for use. In this case, the most critical, secondchromosomes occupying the same “niche.” This number is known
part of constraint(7), i.e., N<N,., is handled automatically — as the chromosome niche count, and is evaluated for each chro-
leading to solutions with zero penaltyot the case for binary ~ Mosome by calculating its distané@ the multiobjective spage

coding. As a consequence, the GA search becomes more effec-t0 all other chromosomes in the population and comparing these
tive. distances to a prespecified valtealled niching radius If the

distance between two chromosomes is smaller than the niching

o ] ] ] ) radius, the two chromosomes are considered to share the same
Multiobjective Genetic Algorithm Sampling Design niche.

Model

) Mating Restriction. To avoid excessive competition between
Problem Formulation distant members of the populatidine., production of lethals
Instead of transforming the two-objective problem into a single- Fonseca and Flemin¢l993 suggested mating restriction. The
objective format, a true, two-objective approach can be taken. In concept is based on the idea that two individuals located at the
the MOGA approach, the two objectives are treated separately.extremes of a search space are unlikely to form a highly fit indi-
These are(1) the calibration accuracy objective defined by Eq. vidual. The implementation of mating restriction follows the logic

(8), and(2) SD cost defined by the surrogate measure in(BQ. of niching. An individ_ual(chromosom)ewill be able to ma_te \_/vi_th
The calibration accuracy objective is kept in a normalized form, another, if and only if the distance between those two individuals
as suggested by Bush and U&898. is less than the mating restriction radi@@other MOGA model

Once the MOGA problem is solved, a whole set of optimal Parameter
solutions defining the tradeoff surface or Pareto-optimal front is
available. Constraint7) is then used to identify the feasible re-
gion of the Pareto-optimal front.

Selection Operator.In Fonseca and Fleming’61993 MOGA
approach, a selection operator called stochastic universal sam-
pling (SUS is used. In a manner similar to proportionate selec-
Multiobjective Genetic Algorithm Solution tion, S_US uses a biased roulette _w_hee_l. I_—k_Jwever, in SUS, the

) ) wheel is only spun once. The remaining individuals to be selected
Several MOGA approaches exist todégeldhuizen and Lamont 4 then chosen by moving sequentially around the wheel by a
1998. The MOGA model presented here is based on Fonseca andyredesignated amount. The use of this incremental step means
Fleming(1993. Generally speaking, a MOGA optimization runis  that the mating process is positionally biased between individuals
similar to a standard GA run, the most fundamental difference that are situated alongside each other in the old population. Ac-
being in the way chromosome fitness values are calculated. Duecording to Fonseca and Fleming, the SUS operator is optimal in
to limited space available, only a brief overview of the Fonseca terms of both bias and spread. They also claim that SUS is pre-
and Fleming’s MOGA model is presented héneore details can  ferred to standard roulette wheel selection because it has lower
be found in the referenge stochastic errors and, thus, lower genetic drift.
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order of the Euclidian norm used, are also investigated.

A typical SOGA run and optimal solution are illustrated using
the following parametersy;=0.5, w,=0.5, Nyin=1, Njpay=16, p
=1, and pg=pc,=10. The following GA configuration was used:
steady state with population size 50, simple one-point crossover
with probability 0.90, and a mutation operator with probability
0.05.

The optimal solution found is to pladé¢=5 pressure loggers at
the following nodes: 40, 90, 110, 120, and 160. The optimal value
of the first normalized function i$,=0.699, the value of the
second normalized function i6,=0.688, and the value of the
overall objective is0=0.693.

Enumeration was then used to solve the same problem. A total
of 65,535=26-1 possible SD solutions were evaluated. The best
solution identified is identical to that obtained using the SOGA
Fig. 1. Case 1: Anytown network layout model.

To analyze the sensitivity of the SOGA optimal solution with
respect to weightv; (w, is always 1-w;) and the norm ordep, a
series of SOGA runs were performed. The results are presented in
Table 1. The following are notedl) as the weightv; increases
(andw, decreases parameter accuracy becomes more important
than SD cost, causing the optimal number of SD locations to
increasej2) the optimal solution is sensitive t@; andp; (3) for

Crossover and Mutation OperatorsThe same crossover and
mutation operators used in the SOGA SD model are used here.

Case Studies p=2 andp=20 and a relatively large weight increment of 0.1, the
behavior of the Euclidian norm emphasizes extreme valuds of
Case Study 1: Literature Sampling Design Problem andf,, leading to the identification of two extreme SD solutions

(N=N,,»=1 andN=N,,,,=16, see bottom part of Table.1

Problem Description
This case study tests the performance of the two suggested SOCase 1.2: Application of Multiobjective Genetic Algorithm
approaches on an artificial network known in the literature as the Model. Analyses were carried out to verify the MOGA SD
“Anytown” model (Walski et al. 198Y. The model has previously model for the same SD problem. The following MOGA
been used to test different calibration modéBrmsbee 1989; parameters/settings were used: binary coding, population size 50,
Lansey and Basnet 1991; Ferreri et al. 199%he specific objec- uniform crossover with probability 0.7, mutation probability 0.9,
tives of this case study ar€l) to apply and verify both SOGA  niche radius 0.02, and mating restriction radius 0.10.
and MOGA SD models(2) to compare SOGA and MOGA SD The optimal Pareto front found by MOGA is shown in Fig. 2,
models and identify their advantages and disadvanta@sp and contains 17 SD solutions. Details about each solution are
compare results obtained by the MOGA SD model to results ob- given in Table 2. Since the solutions fdi=0 and N=16 are
tained using other published SD modéterreri et al. 1994; Bush trivial, the optimal solution should, based on one’s preferences, be
and Uber 1998; de Schaetzen et al. 2000 chosen from the other 15 available solutions. Note that each point

The objective of the SD analysis presented here is to deter-on the Pareto-optimal front can be identified by solving the rel-
mine the best network locations for collection of pressure data for evant single objective SD problem. For example, the point on the
calibrating, as accurately as possible, the Anytown hydraulic Pareto front corresponding f8=5 can be identified by running
model(see Fig. 1L The steady-state hydraulic model is calibrated the SOGA SD model with the following set of parametens:
for five loading conditions, with model and calibration data taken =1.0, w,=0.0, N,,;;=5, Nyax=5, andp=1. The results from the
from Ormsbeg1989. MOGA SD model were thus verified by formulating and solving

A total of N,=16 nodes(Nodes 20-170are considered as 16 independent SOGA SD problems, the results confirming that
possible locations for pressure observations. Fixed head nodesll points on the MOGA Pareto optimal front are correctly
(reservoir and two tanksare excluded from the analysis. The SD determined.
optimization problem is solved for the calibration of the hydraulic Finally, from Fig. 2 and Table 2 the following can be noted:
model for a total 0ofN,=5 grouped Hazen—William&HW) pipe (1) a comparatively small number of network nodes need to be
roughness coefficien{she first four parameters are as defined in observed to achieve relatively high calibration accuracy, i.e., to
Ormsbeg(1989 while the fifth parameter represents the grouped significantly reduce calibration uncertaint§2) The most fre-
fifth and sixth parameters from the same pdp€rue parameter  quently chosen, i.e., best pressure measurement locations are
values are used to obtain the full Jacobian maljix The matrix those near locations of high demand and far from fixed-head
has a total oN,=80 rows(16 nodes times 5 loading conditions  nodes, as previously suggested by Waldli83. Indeed, accord-
andN,=5 columns. Pressure uncertainties are evaluated bif,all  ing to the largest number of “ones” in Tabldsee also last row in
analyzed SD location€],=J,,). Table 3, the best pressure measurement location is Node 90. This

node has the highest sum of demands for all five loading condi-

Case 1.1: Application of Single Objective Genetic Algorithm tions and is relatively far from all three fixed-head nodes. The
Model. Analyses were carried out to verify the SOGA SD model. same is true for Node 120. On the other hand, even though it has
The optimal solution is compared to the best solution found by an the second highest total demand, Node 60 is not a desirable mea-
enumeration method for two equally weighted SD objectives. surement location since it is very close to Tank A. Furthermore,
Sensitivity of the SOGA model with respect to weights and the Node 170 is desirable even with a relatively low total demand,
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Table 1. Case 1.1: Optimal Single Objective Genetic Algorithm Solutions for Different Valugsasfdw;

Network node ID

Wy e} f, f, N 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
0.0 0.938 — 0938 1 Any node
0.1 0.848 0043 09381 0O O O O O O o0 O 0 0 O 0 0 0 0 1
0.2 0.759 0043 09381 0O O O O O O o0 O 0 0 O 0 0 0 0 1
0.3 0.697 0574 07504 0 O 1 O O O o0 1 0 1 1 0 0 0 0 0
0.4 0.692 0699 06885 0O O 1 O O O o0 1 0 1 1 0 0 0 1 0
0.5 0.693 0699 06885 0O O 1 O O O o0 1 0 1 1 0 0 0 1 0
0.6 0.708 0806 05637 0O O 1 O O O o0 1 1 1 1 0 0 0 1 1
0.7 0.748 0908 037 100 O 1 1 o0 O O 1 1 1 1 1 1 0 1 1
0.8 0.811 0967 0188 130 O 1 1 1 1 O 1 1 1 1 1 1 1 1 1
0.9 0.900 0.993 0.063 150 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.0 1.000 1000 00OOCO 161 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0.0 0.938 — 0938 1 Any node
0.1-04 0.89-0.73 0043 09381 O O O O O O O O 0 0 O 0 0 0 0 1
0.5-1.0 0.71-1.00 1.000 0.000 161 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 0.0 0.938 — 0938 1 Any node
0.1-0.2 093-092 0043 09381 O O O O O O O O 0 0 O 0 0 0 0 1
0.3-1.0 0.94-100 1000 0000 162 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note: “1” means that node should be monitored, “0” opposite.

mainly due to its location on the network edge, relatively far from
all fixed head nodedq3) The optimal set folN measurement lo-
cations is not always a superset of that férl locations(e.qg.,
optimal locations foN=4 are 40, 90, 110, and 120, while optimal
locations forN=3 are 90, 120, and 140Therefore, SD models
that use rankingFerreri et al. 1994; Bush and Uber 1998 any
other methodology in which the optimal set Nf measurement
locations is derived from the optimal setNf1 locations(Yu and
Powell 1994; Piller et al. 1999may fail to identify the best so-
lution.

Case 1.3: Comparison of Different Sampling Design
Models. Analyses are carried out to compare solutions obtained
by the MOGA model to equivalent solutions obtained 0%}
three Bush and Ubei1998 models;(2) the de Schaetzen et al.
(2000 entropy model; and3) the Ferreri et al(1994 model.

The three Bush and Ub&t998 SD models(max-sum, max-
min, and weighted-sumwere developed with th®-optimality
criteria in mind. However, rather than maximizing a determinant
of the curvature matrix directly, all models try to achieve that

:):: k¥ o aﬂ—:l% -
T os \ n/‘(‘:;%l o 2 E
i 07 \ /./;) o ;
E 0.6 \ / ’/( 15 2
3 0,5,_,4,,\,,_ 17 - g
'E o.a 1 . . ] 2
5 o:z // s g

o1 ;/X( - 2

12
Number of Monitored Nodes F;

Fig. 2. Cases 1.2 and 1.3: Comparison of different sampling design
model solutions

indirectly using a simplified, very fast, numerical procedure. To
be fully compatible with the Bush and Uber approach, the full
Jacobian matrix is normalized here as originally suggested by the
authors.

The de Schaetzen et 42000 entropy model solves the opti-
mal SD problem using standard GAs. Conceptually, it is very
similar to the SOGA SD model. The main difference is in the
formulation of the first objective, with calibration accuracy ad-
dressed indirectly by maximizing an entropy measure. The en-
tropy model was originally developed and tested for calibration of
a steady-state hydraulic model using a single loading condition.
However, the Anytown model analyzed here has five loading con-
ditions. To overcome this, each element of the full Jacobian ma-
trix (corresponding to a potential pressure measurement location
and calibration parameteused for the entropy calculations is
created by summation of corresponding absolute pressure sensi-
tivities for all loading conditions.

The Ferreri et al(1994 SD model is also based on the direct
analysis of the full Jacobian matrix and is similar to the max-sum
model of Bush and Uber1998. As with the de Schaetzen et al.
(2000 model, it was originally developed for a steady-state hy-
draulic model with a single loading condition. Consequently, el-
ements of the full Jacobian matrix were calculated here by sum-
ming up corresponding absolute pressure sensitivities for all
loading conditions.

Comparisons of the best solutions obtained using different SD
models is done by(1) comparison of the ranking of analyzed
measurement locations an@) comparison of relevant Pareto
fronts for different SD solutions.

While all the Bush and Ubei1998 models and the Ferreri et
al. (1994 model directly rank measurement locations, other mod-
els do not. To aid comparisons, the optimal measurement loca-
tions obtained by the MOGA model are ranked according to their
frequency of occurrence in the Pareto-optimal front. The same
approach was used for the de Schaetzen ef28l00 entropy
model once the Pareto-optimal front was identified by solving
multiple GA optimization problems. Results of the comparisons
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Table 2. Case 1.2: Multiobjective Genetic Algorithm Pareto-Optimal Front Points

Network nodes

fq F, 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.043 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0.173 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0.319 3 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
0.574 4 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0
0.699 5 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0
0.757 6 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1
0.806 7 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1
0.846 8 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1
0.880 9 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1
0.908 10 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1
0.932 11 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1
0.950 12 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1
0.967 13 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0.982 14 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.993 15 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.000 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Note: “1” means that node should be monitored, “0” opposite.

are presented in Table 3. The following can be notégdOptimal fairly average and is similar to that of the Bush and Uber

ranking of possible measurement locations differs with the SD weighted-sum(1998 model. This is no surprise, since the two
model used. However, most models identified Nodes 90 and 120models are similarly formulated5) As noted above, the de Scha-
as the two best measurement locatid@sThe maximum number  etzen et al(2000 entropy model solution ranks only five non-
of measurement locations that can be ranked by the de ,SCha,‘etzePrivial Pareto-front points. However, the points identified are in
et al. (2000 entropy model is equal to the number of calibration

s i . excellent agreement with the corresponding points from the
parameters, which is why only the best five locations are ranked ; .
here ie. all other nodes have the same rank MOGA solution. (6) As the number of measurement locations

Further comparison of the best SD solutions from different increases, the Pareto-optimal fronts of all models are, generally,
models is made using Pareto fronts. If a particular SD model '€ss different from each other.
produces ranked measurement locations, it is assumed that the

optimal solution forN measurement locations contains tNe Case Study 2: Real-Life Sampling Design Problem
highest ranked locations. Results of the model comparisons are

presented in Fig. 2. The following can be notétl The Pareto Problem Description

front obtained by the MOGA model is the. optimal one, I8, I This case study aims to test the performance of the suggested SD
represents an envelope of the best solutions obtained using all

other models(2) The Pareto front of the Bush and Ub@i998 approaches ona real WDS. Specifically, the objectives(ayeo
max-sum model is, in this particular case, in the closest agree-2PPly and verify use of the proposed SOGA and MOGA models

ment with the MOGA Pareto-optimal front3) The Pareto front ~ On @ real WDS network problem ari) to compare optimal SD
of the Bush and Ubef1998 max-min model is, generally, the  solutions obtained by the SOGA model to solutions suggested by
worst. (4) The performance of the Ferreri et $1994 model is an expert practitioner.

Table 3. Case 1.3: Ranking of Measurement Locations for Different Sampling Design Model Solutions

Single objective genetic algorithm model/

Node ID 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Bush and Ubef1998 14 13 5 6 16 11 8 1 12 3 2 10 7 9 15 4
max-sum

Bush and Ubef1998 6 14 12 10 11 13 9 1 8 15 5 3 7 6 2 4
max-min

Bush and Ubef1998 15 14 9 10 16 12 8 1 11 6 2 5 7 4 13 3
Weighted-Sum

Ferreri et al. 15 13 10 9 16 11 7 4 12 2 1 5 6 8 14 3
(1994

de Schaetzen et al. 6 6 3 6 6 6 6 2 6 4 1 6 6 6 5 6
(2000

Multiobjective genetic algorithm 16 15 3 8§ 13 11 14 1 7 3 2 9 9 12 6 3
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PRV

@ Case 2.1: SOGA Optimal Design (N=28)
A Case 2.1: Expert's Choice (N=28)

PRV 7] Case 2.2: MOGA Optimal Design (N=11)

V4

Fig. 3. Case 2: Optimal pressure measurement locations

The SD problem investigated is the calibration of the hydraulic ~ The network is calibrated as a multiple loading condition
model of a real United Kingdom WDS, studied previously by de steady-state hydraulic model. The three characteristic loading
Schaetzer{2000. The general layout is presented in Fig. 3. The conditions analyzed arél) maximum demand hou® a.m); (2)
WDS covers approximately 6 kinwith a population of around  average demand hou8 p.m), and (3) minimum demand hour
4,500. Ground levels vary from 54 to 200 m above ordinance (3 a.m). Sampling design analyses are carried out to collect nodal

datum. Model demands are predominantly domestic with some yressyre data for calibrating the model for unknown HW pipe
commercial users to the east. The system is supplied by gra"'tyroughness coefficients

from a service reservoisee “Source” in Fig. Band includes two
pressure reducing valve®RVS in the south. The majority of lem is solved for a fixed number &f=28 pressure measurement

pipes are cast iron or ductile iron. A normal water use field test ; . .
was carried out on June 29 1994, with an estimated average delocations. This is done for comparison of the best SOGA model

mand of 14.4 L/S. Based on all available information. EPA- solution to that suggested by the expert. In the second case, the

NET (Rossman 2000hydraulic model was constructed contain- MOGA model is used to soIv_e the multiobjective SD problem. In

ing one tank, 451 nodes, 497 pipes, and two PRVs. both cases, pressure uncertainties are evaluated at all analyzed SD
A total of 32 loggers were initially used to observe pressures in locations(J;=Jpy).

the system. Evidence of obvious anomaliesg., nodal heads

higher than the corresponding reservoir IgVed to the exclusion ~ Case 2.1: Comparison of Single Objective Genetic Algorithm

of data collected by four loggers. Locations of the remaining 28 Solution to Expert's Choice. Sampling design analyses are car-

pressure loggers are depicted in Fig(rBarked with solid tri- ried out to compare the expert’'s choice fd=28 pressure mea-

angles, and are hereafter referred to as the expert’s choice. surement locationssee Fig. 3 with the corresponding set of 28

Two cases are analyzed here. First, the single-objective prob-
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Table 4. Case 2: Calibration Parameter Values

Case 2.1 Case 2.2

Hazen-Williams(HW) HW
Parameter Original Diameter roughness roughness
ID material Lining (mm) coefficient coefficient
1 Cast iron None 76 50 25.7
2 Cast iron None 102 50 46.9
3 Cast iron None 152 55 40.6
4 Cast iron None 254 60 63.2
5 Ductile iron Cement 100 100 101.7
6 Ductile iron Cement 150 100 98.3
7 Ductile iron Cement 250 110 111.0
8 Cast iron Epoxy 76 90 94.7
9 Cast iron Epoxy 102 2 100
10 Medium density polyethylene None 73 a_ 120
11 Medium density polyethylene None 101 a_ 128
12 Medium density polyethylene None 145 130 132.7
13 Polyvinyl chloride None 102 2 128
14 Polyvinyl chloride None 152 130 130.2
#Parameter does not exist in this case.
PEstimated value.
optimal locations obtained using the SOGA model. steady-state GA, integer coding, population size 200, allowed to

A total of N, =210 (out of 451 network nodes were analyzed  run for Nge,=20,000 generations, simple one-point crossover with
as potential pressure measurement locations leading to a larggrobability 0.90, and mutation probability 0.05. Multiple GA runs
number of possible solutions equal f@lao)zsx 10°*. These were carried out using different randomly created initial popula-
nodes were restricted to those pipes for which calibration was tions. At the end, the best solution was selected. Note that due to
possible using the expert’s choice of measurement locations, i.e.the large size of the optimization problem search space, solutions
on pipes upstream of logger locations. Without this restriction, found should be treated as suboptimal, i.e., there is no guarantee
meaningful comparison of expert and SOGA sampling designs that the global optimum is identified.
would not be possible. The drawback associated with this ap- The set of 28 optimal pressure measurement locations is pre-
proach is that the restricted selection of nodes artificially im- sented, together with the expert's equivalent choice, in Fig. 3. As
proves the expert’s choice of measurement locations by putting acan be seen, some clustering of measurement locations occurs.
relatively large number of devices on locations near the network This is mainly a consequence @f) the chosen parameter group-
boundaries. However, it will be shown that even in such condi- ing; (2) the locations of sensitivée.g., high demandnodes; and
tions it is possible to identify a SOGA solution that is better than (3) possible correlation among sensitivities.
that suggested by the expert. The comparison between the expert’'s choice and the optimal

It is assumed that the hydraulic model will, once relevant data sampling design is documented numerically in Table 5. The opti-
are collected, be calibrated fd,=10 calibration parametefsee mal SOGA solution is clearly better than the expert's choice of
Table 4. Initially, the idea was to define a larger number of cali- measurement locations, as indicated by several metrics. On the
bration parametergup to one per pipe However, preliminary basis of calibrated model pressure uncertainty, the SOGA design
analysis showed that under the demand conditions analyzed, pipas 22% better than the expert’s.
roughness coefficients had to be grouped to gain enough informa-
tion (from measuremenisTherefore, HW pipe roughness coeffi- Case 2.2: Application of Multiobjective Genetic Algorithm
cients were grouped using the “American” criterigle Schaetzen  Model. Analyses were carried out to apply and verify the MOGA
2000, according to their materidi.e., lining) and diameter. In SD model using a real problem. The aim was to determine opti-
this particular case, this was correct since the ages of pipes withinmal locations for the collection of pressure data to be used later in
a group were approximately the same. When estimating param-calibrating a multiple loading condition steady-state hydraulic
eter values, it was assumed that existing pressure measurementsodel.
are not available, since they were not available when the expert's It is assumed that the network model will, once pressure data
choice of measurement locations was made. Therefore, calibra-are collected, be calibrated for unknown HW pipe roughness co-
tion parameter values, shown in Table 4, were estimated usingefficients. The HW coefficients were grouped using the same
engineering judgment based on other information available. grouping criterion as in Case 2.1, leading NR=14 unknown

Once estimated, parameter values were used to define a fullcalibration parameterésee Table ¥ The number of parameter
Jacobian matrixJ,; which is a fundamental matrix for any SD  groups is larger here than in the previous case since all network

analysis. Here, the matrix has a total Mf=630 rows(N,=210 junctions (N,=451 are considered as potential locations for

nodes timesdN;=3 loading conditionsand N,=10 columns. All pressure loggers.

potential pressure loggers are assumed to be of similar accuracy Unlike Case 2.1, when determining values of the calibration

with a standard deviation af,=1.0 m. parameters, it was assumed that pressure data were available for
The following parameters were used in all SD rumy, the 28 measurement locations forming the expert’s choice. There-

=N =28, w;=1, w,=0, andp=1. The GA settings used were: fore, values for 10 of the 14 parameters were identified by cali-
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Table 5. Case 2.1: Comparison of Sampling Designs

Relative
Best single objective improvement
Metric Expert design genetic algorithm sdesign (%)
Relative calibration 0.338 0.423 25
accuracyf; [see Eq(8)]
Average pressure 0.27 0.21 22

prediction uncertainty,

(m) [see Eq(5)]

Maximum pressure 1.50 0.97 35
prediction uncertainty

(i.e., square root of the

largest diagonal element

of Cov,) (m)

Trace(i.e., sum of the 88.8 53.8 39
diagonal elemenjsof

Cov, (m?)

brating the hydraulic model for the three characteristic loading allowed pressure uncertainti,).

conditions using this existing pressure défapelan 2002 The Fig. 4 shows that for the number and grouping of calibration

other four parameter, 10, 11, and 18were estimated using parameters defined here, only 11 pressure loggetstal of 33

engineering judgment and other available information. Once de- pressure measuremenése necessary to achieve average pressure

termined, calibration parameter valusge Table #were used in prediction uncertainty below 1.0 m. The 11 optimal locations are

the calculation of the full Jacobian matriy,,. presented in Fig. 3, which shows that the logger locations are

To solve the optimal SD problem, multiple MOGA runs were reasonably well distributed throughout the network.

carried out using randomly created initial populations. Note that

due to the extremely large search spémeler of 135, solutions

should be treated as suboptimal, i.e., there is no guarantee that th&ummary and Conclusions

Pareto-optimal front is identified. The following model settings

were used in all optimization runs: integer coding, population size The objectives and constraints used to solve the problem of opti-

100, uniform crossover with probability 0.7, mutation probability mal SD for calibration of WDS models are first identified. The

0.9, niche radius 0.05, and mating restriction radius 0.25. All runs two conflicting objectives arg1) maximize calibration accuracy

were stopped after 10,000 generations. Finally, note that in this by minimizing some overall model prediction or parameter uncer-

case, typical MOGA runs took approximately Zdn a 3 GHz PC tainty measure an¢2) minimize the total SD cost. Two new SD

computey to converge. methods are then presented. In the first, the two objectives are

The best Pareto front identified fo¢ betweenN,,,=10 and normalized and the optimal SD transformed into a single objec-

Nmax=30 is presented in Fig. 4. For each point on the Pareto- tive problem, which is then solved using a standard, SOGA. In

optimal front, a corresponding set of optimal locations for pres- the second, the SD problem is solved as a true multiobjective

sure loggers exists, which are not shown here due to limited problem using MOGA based on Pareto ranking. Both SD meth-

space. From the Pareto front, an optimal SD solution can be se-odologies were verified on case studies including both literature

lected by either fixing the number of measurement devides and real-life problems.

according to the budget limit, or by specifying the maximum From the case studies, the main conclusions when comparing
SOGA and MOGA SD models arédl) SOGA can detect one
optimal solution in a single GA run while MOGA can detect a

030 16 whole set of(Paretg optimal solutions, i.e., it can detect the
M_ ‘4 whole tradeoff surface. Consequently, multiple SOGA runs are
-~ 025 ' necessary to obtain the same level of information that can be
:-;'020_ " 12 g obtained from a single MOGA run2) When SOGA is used,
g I O ¥ preferences toward different objectives need to be specified be-
§ 0.45 el oa & fore a model run, while in MOGA preferences can be specified
< 5( 06 g after a run, thereby allowing much greater flexibility for decision
§ 0.10 T°° 8 making.(3) A penalty function must be implemented in SOGA to
€ o0s M ) 1043 handle relevant constraints, this being unnecessary in MOGA.
) - AR 02 Typically, penalty functions make the search more diffic(4).
0.00 , , . 00 The main drawback of the MOGA model when compared to
10 15 20 25 30 SOGA is that it requires additional search parameters whose val-
Number of Pressure Loggers F; (-) ues need to be tuned for optimal performance.

The main conclusions in comparing the MOGA SD model
solution against SD model solutions from the literat(Ferreri et
) ) o ) ) al. 1994; Bush and Uber 1998; de Schaetzen et al. 28@0(1)
Fig. 4 Case 2.2: Pareto-optimal multiobjective genetic algorithms The MOGA SD model is preferred since it addresses explicitly
solution the calibrated model accuracy using a model prediction uncer-

[—e—Retative Accuracy i;—Unoenainty|
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tainty measure rather than implicitly using entrdple Schaetzen

et al. 2000 or some sensitivity measutEerreri et al. 1994; Bush
and Uber 1998 Consequently, the MOGA model identifies the
best tradeoff curve, this being an envelope of equivalent curves
obtained from the other SD models mentioned abd2g.The
MOGA model is preferred to ranking type methd@=rreri et al.
1994; Bush and Uber 199®ecause the optimal SD fof mea-
surement points is not always a superset of the optimal SD for
N-1 points. Therefore, SD models that use ranking, or other meth-
odologies, in which the optimal set fd¥ locations is derived
from the set forN-1 locations(Yu and Powell 1994; Piller et al.
1999 may fail to identify the optimal SD solution3) When

compared to other published SD models, the obvious drawback of

the MOGA (and SOGA model is the computation requirement
(see Case 2)2This is the price that must be paid for relatively
accurate, direct evaluation of the relevant uncertairitigsically
including matrix inversion or determinant calculatiohis may

be an obstacle when analyzing large real network models, espe-

cially with large numbers of calibration parameters. However, it is

envisaged that with constant increases in computational power,

this will be less of a problem in the future.
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Notation

The following symbols are used in this paper:
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Fim = value ofF; assuming that all analyzed locations are
monitored;
F, = second sampling design objective;
f, = normalized first sampling design objective;
f, = normalized second sampling design objective;
J = Jacobian matrix;
Jm = full Jacobian matrixall locations monitored
J, = prediction Jacobian matrix;
N = actual number of measurement devices;
N, = number of calibration parameters;
Nmax = mMaximum allowed number of measurement devices;
Nmin = minimum number of measurement devices;
Nm = number of analyzed sampling design locations;
N, = number of observation@.e., measurements
N, = number of model predictions for whom uncertainties
are evaluated;
p = Euclidian norm order;
r = residual vector;
s = calculated error standard deviation;
W = calibration weight matrix;
y = model predictions vector;
y* = measurement vector;

200 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / MARCH 2005

Lansey, K. E., and Basnet, €199]). “Parameter estimation for water
distribution networks."J. Water Resour. Plan. Managel171), 126—

Lansey, K. E., EI-Shorbagy, W., Ahmed, I., Araujo, J., and Haan, C. T.
(2001). “Calibration assessment and data collection for water distri-
bution networks.”J. Hydraul. Eng, 1274), 270-279.

Meier, R. W., and Barkdoll, B. D(2000. “Sampling design for network
model calibration using genetic algorithmsl” Water Resour. Plan.
Manage, 1264), 245-250.

Morley, M. S., Atkinson, R. M., Savic, D. A., and Walters, G. ®@002).
“GAnet: Genetic algorithm platform for pipe network optimisation.”
Adv. Eng. Software32(6), 467-475.

Ormsbee, L. E(1989. “Implicit network calibration.”J. Water Resour.
Plan. Manage. 1152), 243-257.

Piller, O., Bremond, B., and Morel, P1999. “A spatial sampling pro-
cedure for physical diagnosis in a drinking water supply network.”
Proc., Water Industry Systems: Modelling and Optimisation Applica-
tions, D. A. Savic and G. A. Walters, eds., Vol. 1, Research Studies
Press Ltd., Exeter, U.K., 309-316.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.
(1990. Numerical recipes: The art of scientific computi@ambridge
Univ. Press, Cambridge, U.K.

Rossman, L. A(2000. Epanet2 users manualUS EPA, Washington,
D.C.

Shamir, U., and Howard, C. D. 11968. “Water distribution systems
analysis.”J. Hydraul. Div., Am. Soc. Civ. Eng94(1), 219-234.

Veldhuizen, D. A. V., and Lamont, G. B1998. “Multiobjective evolu-
tionary algorithm research: A history and analysiBR-98-03 Depart-
ment of Electrical and Computer Engineering, Air Force Institute of
Technology, Wright-Patterson Air Force Base, Ohio.

Walski, T. M. (1983. “Technique for calibrating network modelsJ.
Water Resour. Plan. Manage1094), 360-372.

Walski, T. M., et al.(1987. “Battle of network models: Epilogue.J.
Water Resour. Plan. Manage1132), 191-203.

Yu, G., and Powell, R. S1994). “Optimal design of meter placement in
water distribution systemslht. J. Syst. Sci.2512), 2155-2166.

de Schaetzen, W., Walters, G. A., and Savic, D.(2000. “Optimal
sampling design for model calibration using shortest path, genetic and
entropy algorithms.'Urban Watey 2, 141-152.



