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Abstract:

Water demand forecasts are needed for the design, operation and management of urban water supply systems. In
this study, the relative performance of regression, time series analysis and artificial neural network (ANN) models
are investigated for short-term peak water demand forecasting. The significance of climatic variables (rainfall and
maximum air temperature, in addition to past water demand) on water demand management is also investigated.

Numerical analysis was performed on data from the city of Ottawa, Ontario, Canada. The existing water supply
infrastructure will not be able to meet the demand for projected population growth; thus, a study is needed to
determine the effect of peak water demand management on the sizing and staging of facilities for developing an
expansion strategy. Three different ANNs and regression models and seven time-series models have been developed
and compared. The ANN models consistently outperformed the regression and time-series models developed in this
study. It has been found that water demand on a weekly basis is more significantly correlated with the rainfall amount
than the occurrence of rainfall. Copyright  2005 John Wiley & Sons, Ltd.
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INTRODUCTION

The projected population and employment growth of the Ottawa region in Canada, coupled with high peak
water use, requires the expansion of water supply and distribution facilities. In order to have a least-cost
infrastructure expansion strategy, it is necessary to develop a water demand forecast model. The data derived
for the 3W pressure zone was used in this study. The 3W pressure zone encompasses most of the rapidly
expanding areas of Kanata and Stittsville (West Urban Center, or WUC). This region contains a reservoir and
pump station that provide the community with their water supply. It is expected that the water supply and
distribution infrastructure (water mains, pumps, elevation and reservoir tanks) will not be able to provide the
community with peak outdoor water demand for the projected growth of the region. The residential population
is predicted to increase from 62 228 recorded in 2001 to 160 175 for the year 2021. The employment population
is also expected to increase from 17 618 in 2001 to 57 951 in the year 2021.

The peak hour outdoor water use (watering lawns, sprinklers) is of particular concern in sizing and selecting
the water facilities servicing the 3W region. The average day demand has increased from 17Ð8 Ml day�1

in 1993 to 28Ð7 Ml day�1 in 2002, and the maximum peak demand has also significantly increased from
67Ð8 Ml day�1 in 1993 to 109Ð3 Ml day�1 in 2002. Because of the projected growth of the 3W region, a
water demand forecasting methodology is needed to provide an in depth analysis and assessment of the
factors affecting peak water usage. There are different approaches to water demand forecasting, including
various statistical techniques, such as regression and time-series analysis.

Water demand forecasts are used for several purposes, such as: planning new developments or system
expansion; to estimate the size and operation of reservoirs, pumping stations and pipe capacities; and for
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urban water management issues (e.g. pricing policy, water use restrictions, etc.). Long-term forecasting is
required mainly for planning and design, and short-term forecasting is useful in operation and management.
The main purpose of the current study is to investigate techniques of regression and time-series analysis and
an artificial neural network (ANN) for short-term forecasting of water use.

Perhaps the most frequently adopted methods for forecasting have been regression and time-series analysis
(Jain et al., 2001). Jain et al. (2001) developed multiple linear regression models by using weekly maximum
air temperature, weekly rainfall amount, weekly past water demand, and the occurrence and non-occurrence of
rainfall as parameters for their models. The occurrence of rainfall was inputted as a binary series, where one
was assigned to weeks with rainfall and zero for weeks without rainfall. Graeser (1958) used linear regression
models with the number of previous days of maximum air temperature above 100 °F and the number of
weeks since the occurrence of rainfall was above 1 in. Howe and Linaweaver (1967) developed a series of
regression models covering domestic demands, summer sprinkler demands, and maximum sprinkler demands.
Climatological variables were used in their regression models, such as summer precipitation, summer potential
and maximum day potential evapotranspiration, average summer sprinkling demand, and irrigable area per
household. Howe and Linaweaver (1967) also included a series of pricing factors into their regression models,
such as marginal commodity charge to average summer total use, and value market of household.

Another general approach to water demand forecasting is based on time-series analysis. Jain et al.
(2001) used autoregressive models of orders 2 and 3 to forecast peak weekly water demand. Maidment
et al. (1985) used short-term Box and Jenkins models for daily municipal water use, which were a function of
rainfall and air temperature. Maidment and Miaou (1986) applied this model to the water consumption from
nine cities in the USA. The coefficient of determination R2 was used to verify the accuracy of their models and
values ranged from 0Ð48 (Allentown, Pennsylvania) to 0Ð96 (Austin, Texas). Smith (1988) developed time-
series models to forecast daily municipal water demand, which included day of week effects and a randomly
varying mean, two factors that were not included in Maidment models. Zhou et al. (2000) developed time-
series models for daily water consumption in Melbourne, Australia. Their models included trend, seasonality,
climatic correlation and autocorrelation components.

In recent years, the technique of ANNs has been used with the back-propagation algorithm for several civil
engineering applications (Lingireddy and Ormsbee, 1998). ANN models have been used to model daily and
hourly water demand forecast (Crommelnyck et al., 1992) and for weekly peak demand (Jain et al., 2001).
They can be formulated as a function of climatological variables (such as air temperature, volume and the
occurrence of rainfall) and previous water demand. Complex ANN models have been implemented for daily
water demand predictions for the city of Regina’s water distribution system (Lertpalangsunti et al., 1999).
Obeysekera et al. (2000) used ANN models to predict inflow volumes to Lake Okeechobee to benefit the
operation of regional water management systems that include lakes and storage reservoir for storage control
and water supply.

In this paper, an exploratory analysis was initially performed to quantify the relationship of climatological
variables with peak demand. Three different statistical techniques were used to forecast short-term water
demand. Linear and multiple linear regression models were hypothesized using weekly maximum temperature,
weekly rainfall amounts, the occurrence of rainfall in a week, and the peak water demand. Time-series models
were applied to the weekly peak demand series to determine an autoregressive integrated moving-average
(ARIMA) model that best fit the observed data. ANN models were developed using similar input variables
to those used in the regression analysis.

DATA

Numerical analysis was performed on weekly peak water demand (megalitres per day) obtained from the 3W
pressure zone located in the Ottawa region. Weekly average maximum temperature (centigrade) and weekly
total rainfall (millimetres) were obtained from Environment Canada. The water demand series record length
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ranged from 1993 to 2002. Only the summer months (1 May to 3 September) were used in the analysis, since
peak demand usage occurs in summer months for a given year. The weekly peak water demand series was
divided into ‘training’ and ‘testing’ data sets. The former set began in 1993 and ended in 2001, and contained
162 weeks of peak water demand, temperature and rainfall data. The latter contained 18 weeks of data for
the year 2002. The performance of all statistical models was analysed by comparing the known peak water
demand data in the year 2002 with predicted values obtained from different models.

METHODOLOGY

Exploratory analysis

The preliminary step in investigating which variables influence water demand is to determine if any seasonal
patterns exist in the water demand series, and explore the cross-correlation coefficients between climatological
variables and the water demand series.

The seasonal or periodic component can be detected by using the Fourier analysis, as defined by (Kite and
Adamowski, 1973)
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where a0 is the mean of the data set, m is the number of harmonics, N is the record length of the data set,
and t D 1, 2, . . . , N is the time. The coefficients of the Fourier series (am and bm) when m 6D N/2 are defined
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Cross-correlation examines dependency between two time series. The cross-correlation coefficient can be
estimated by the sample cross-correlation as follows (Box and Jenkins, 1976):
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where x and y denote the time series of two different variables. The variables used to compute cross-correlation
can be seen in Table I.

Linear and multiple linear regression

Regression analysis was used to investigate the linear relationship between peak water demand and
climatological variables. Linear and multiple linear regression models were used.
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Table I. Cross-correlation coefficients between peak
water demand and climatological variables

Variable Demand (t)

Rainfall (t) �0Ð3523
Rainfall (t � 1) �0Ð3129
Rain occurrence (>25Ð4 mm) 0Ð0575
Rain occurrence (>10 mm) 0Ð0357
Rain occurrence (>5 mm) 0Ð0221
Rain occurrence �0Ð0606
Temperature (t) 0Ð4917
Temperature (t � 1) 0Ð2717
Demand (t � 1) 0Ð5883

Table II. Results found from Fourier analysis

Harmonic (months) Frequency Period (weeks) Explained variance C2
m

3 0Ð0185 54Ð0 4Ð92
4 0Ð0247 40Ð5 6Ð22
5 0Ð0309 32Ð4 5Ð42
6 0Ð0370 27Ð0 3Ð83
9 0Ð0556 18Ð0 6Ð71

10 0Ð0617 16Ð2 4Ð27
16 0Ð0988 10Ð1 5Ð01
20 0Ð1235 8Ð1 7Ð83
23 0Ð1420 7Ð0 4Ð16
30 0Ð1852 5Ð4 3Ð54

Simple linear regression was used to determine the relationship between peak water demand for the current
week Dt and the following variables: average weekly maximum temperature for the current week Tt, average
weekly maximum temperature for the previous week Tt�1, weekly total rainfall for the current week Rt,
weekly total rainfall for the previous week Rt�1, and previous weekly peak demand Dt�1. The coefficients of
determination for variables analysed can be seen in Table II.

In this study, three multiple linear regression models were developed for weekly peak demand forecasts.
The first model, called MLR-1, is a function of weekly peak demand in the previous week, weekly average
maximum temperature and weekly total rainfall of the current week (Jain et al., 2001):

Dt D ˇ0 C ˇ1Dt�1 C ˇ2Tt C ˇ3Rt �6�

The second model, denoted MLR-2, is similar to the first model, but the weekly average maximum temperature
and total rainfall amount from the previous week are added to the regression model (Jain et al., 2001):

Dt D ˇ0 C ˇ1Dt�1 C ˇ2Tt C ˇ3Rt C ˇ4Tt�1 C ˇ5Rt�1 �7�

The third model is similar to Equation (6); however, the actual rainfall amount is replaced by the occurrence
or non-occurrence of rainfall for the given week, which is denoted by the ˇ coefficient in the multilinear
regression equations to follow. For this MLR-3 model, if any rain has occurred, then the coefficient B D 1;
if no rain has occurred, then the coefficient ˇ D 0 (Jain et al., 2001):

Dt D ˇ0 C ˇ1Dt�1 C ˇ2Tt C ˇ6BRt �8�

where coefficients ˇ0 to ˇ6 are found from the regression equations.
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Time-series analysis

Box and Jenkins (1976) time-series models have been used to model short-term water demand. Time-
series analysis investigates models governing the process of water demand. The first step in the Box–Jenkins
approach is to determine whether the water demand time series is stationary (data set having a constant mean
and variance) and whether it has a significant seasonality component. Non-stationary data sets can often be
detected by determining the autocorrelation coefficient function (ACF) defined by (Box and Jenkins, 1976)
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where x is the variable, t is the time, and all summations are carried out from t D 1 to t D n � k. Equation (9)
determines the degree of correlation between observations that are separated by k time units.

If there is a strong dependence in the ACF plot, meaning no quick decay to zero, then the data set is not
stationary. To make a data set stationary, Box and Jenkins (1976) recommend a differencing approach, which
is defined by

wj D Dj � Dj�1 �10�

where wj is a new series that is stationary and Dj represents the peak demand at time j. Seasonality in the
data set can also be seen by a periodogram, which has been discussed in the previous section. If significant
seasonality is detected, then a seasonality term can be added to the stochastic model.

Once stationary conditions have been satisfied, the ACF and partial ACF (PACF) plots are used to identify
the stochastic model. If the data are stationary without differencing, then autoregressive moving average
(ARMA) models are used. These ARMA(p,q) models are defined by autoregressive components of order
p and moving-average components of order q. The equation describing ARMA(p,q) models is (Box and
Jenkins, 1976)

Dt D � C
p∑
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where p represents autoregressive parameters ˛1, . . . , ˛p, and q moving-average parameters �1, . . . , �q. The
� term is the mean of the peak water demand series, and εt is the uncorrelated normal random variable (also
referred to as white noise) with a mean of zero and constant variance.

If the data are transformed into a stationary model, then the ARIMA model of order p, d, and q is used,
where d is the number of times the data are differenced. Usually, one difference of the data set is required to
transform the series into a stationary process. The equation defining an ARIMA(p,d,q) process is

Dt D Dt�1 C
p∑

jD1

˛j�wj�1� �
q∑

jD1

��jεt�j� C εt �12�

where all the variables are as previously defined.
Various tests exist to determine whether the model chosen accurately describes the observed time series.

In this paper, the Akaike information criterion (AIC) was used to verify the model (Box and Jenkins, 1976):

AIC D N ln�MLE of residual variance� C 2�p C q� �13�

where MLE stands for the maximum likelihood estimate of the residual variance.
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ANNs

ANNs are a class of mathematical models that function similar to biological processes of the brain. ANN
models are comprised of user-defined inputs (rainfall, temperature, etc.) and desired output (prediction of
peak demand) that are connected by a set of highly interconnected nodes arranged in a series of layers. These
nodes are connected to the user-defined inputs and to the desired output. Figure 1 illustrates an ANN used in
this paper with one input layer, one hidden layer and one output layer (Lingireddy amd Ormsbee, 1998).

The main advantage of using ANN models is the capability of the network to self-learn. Knowing the
inputs and desired output(s), the ANN model will try to reproduce the observed outputs through a series of
iterations. The most common ANN network is the feed-forward network, which uses the back-propagation
algorithm for training. In this process, the selected inputs are directed to the nodes in the input layer and are
propagated forward to compute the output vector using randomly selected initial weights in the hidden layer
and the use of a non-linear function called an activation function, which often is assumed to be a continuous
differentiable sigmoidal logistical function (Lippman, 1987):

f�x� D 1

1 C e�x �14�

The error from the output vector computed by the ANN model is calculated knowing the observed output.
This computed error is then back-propagated through the network and the initial randomly selected weights
are updated using the following equation (Lippman, 1987):

wij�t C 1� D wij�t� C �υjyj C ˛�wij�t� � wij�t � 1�� �15�

where wij�t C 1� is the weight from hidden node i or from an input to node j at time t, � is the learning
coefficient, yj is the actual output at node j, ˛ is the momentum correction factor (which speeds up the
convergence), and υj is the error term defined as (Lippman, 1987)

υj D yj�1 � yj��dj � yj� �16�

where dj is the desired demand at node j. Equation (16) is used if node j is an output node; however, if
node j is a hidden node then the error term becomes (Lippman, 1987)
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Figure 1. The ANN network architecture
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The output vector is recalculated based on the adjusted weights, and the error between the observed data and
model predictions is recalculated. The weights are then adjusted again, computing a new set of output vectors.
This process is repeated until an acceptable error is achieved.

In this paper, simple ANN networks were developed consisting of an input layer with three or four input
nodes, one single hidden layer composed of four nodes, and one output layer consisting of one node denoting
the predicted peak water demand. This architecture was found on a trial- and -error basis, as was the optimum
learning coefficient (assumed to lie within the range of 0 to 0Ð2). The correction factor was fixed. Regression
Equations (6) and (7) were used for the input variables in the ANN-1 and ANN-2 models respectively. They
consisted of previous weekly peak demand, temperature and rainfall volume variables. Regression Equation (8)
was used for the input variables for the ANN-3 model. The occurrence or non-occurrence of rainfall instead
of the actual rainfall amount was used.

Model performance

As an indication of goodness of fit between the observed and predicted values, the coefficient of
determination R2, the average absolute relative error (AARE), and the maximum absolute relative error
(Max ARE) were calculated. AARE is defined by

AARE D 1

N

N∑
iD1

∣∣∣∣Oi � Di

Oi

∣∣∣∣ �18�

where Oi is the observed peak water demand and Di is the predicted peak water demand found from regression,
time series, and stochastic models. The smaller the value of AARE the better is the performance of the model.
The maximum of the absolute relative error among all the model predictions is a measure of the robustness
of the model, whereby the smaller it’s value, the better the performance of the model. The coefficient of
determination measures the degree of correlation among the observed and predicted values. The results of
these statistics are found in Table VII.

RESULTS AND DISCUSSION

Exploratory analysis

Based on the cross-correlations (Table I), it can be seen that the peak water demand series at time t is
strongly correlated with the peak demand from the previous week (t � 1) with a positive correlation value of
0Ð5883. Temperature at time t is also correlated with peak demand, with a correlation of 0Ð4917. For rainfall
volume, the strongest link was found between peak demand and rainfall at the current time interval with a
value of �0Ð3523, meaning that the weekly demand decreases in magnitude whenever there is increasing
rainfall totals. However, the occurrence of rain with or without threshold did not appear to be correlated with
the peak demand series, with the highest correlation of �0Ð06 found between peak demand and the occurrence
of rainfall without threshold.

Table II gives the results from Fourier analysis for the peak demand series. It can be observed that there
is no predominant single periodicity component in the demand series. The components explaining the most
variance are at 18 weeks (corresponding to a 1 year period) and at 8 weeks (corresponding to a 2 month
period), although they account for only 14% of explained variance.

Linear and multiple linear regression

The results from linear regression analysis are shown in Table III; these confirm the cross-correlation results,
that the previous peak water demand t � 1 (with R2 D 0Ð346) and temperature at the current time interval
t (with R2 D 0Ð2418) are the variables that describe the peak demand series the best.
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Table III. Coefficient of determination R2 for simple
linear regression models

Peak Demand (t) vs Slope R2

Peak demand (t � 1) 0Ð598 0Ð3460
Temperature (t) 11Ð508 0Ð2418
Temperature (t � 1) 5Ð622 0Ð0738
Rainfall (t) �1Ð645 0Ð1241
Rainfall (t � 1) �1Ð459 0Ð0979

Table IV. Multiple linear regression models

Parameter Coefficient Model

MLR-1 MLR-2 MLR-3

Dt�1 ˇ1 0Ð488 0Ð555 0Ð632
Tt ˇ2 7Ð157 12Ð801 14Ð159
Rt ˇ3 �1Ð415 �1Ð176
Tt�1 ˇ4 �7Ð730 �9Ð438
Rt�1 ˇ5 �0Ð629
BRt ˇ6 �11Ð842
Intercept ˇ0 0Ð139 34Ð846 �1Ð886

Table IV displays the results found by using multiple linear regression analysis. The model that performed
the best in training was MLR-2 (R2 D 0Ð6199), which was a function of maximum average weekly temperature
at times t and t � 1, weekly total rainfall at times t and t � 1 and the previous weeks peak water demand.
However, the model performing the best in the testing data set was MLR-1 (R2 D 0Ð5334), which was a
function of previous weekly peak demand, weekly average maximum temperature and total rainfall amount
of the current week, and is given by the following equation:

Dt D 0Ð488Dt�1 C 7Ð157Tt � 1Ð415Rt C 0Ð139 �19�

It appears for this time scale that the peak demand series is, in fact, better described with the use of the actual
rainfall amount than the occurrence or non-occurrence of rainfall.

Time series

The first stage in developing time-series models is to determine whether the peak water demand series
is a stationary process. Therefore, an ACF plot of the peak demand series was performed; this is shown in
Figure 2a, and illustrates a strong dependence in the series for lags up to 10. This implies that the data series is
not stationary, violating the assumption required to perform this analysis. Therefore, the data were differenced
using Equation (10), and the ACF plot was performed on the differenced series (Figure 2b). The new plot
shows that the ACF contains two significant lags, and the remaining lags are not significantly correlated;
therefore, ARIMA models were identified to predict water demand.

A total of seven ARIMA models were selected to fit the trained peak water demand series. These are shown
in Table V, along with their coefficients and AIC values. It appears that the ARIMA(3,1,1) has the best fit
with the observed data, which is shown by the lowest AIC value. In the prediction stage, all seven models
were used to determine which model has the best agreement with the training and testing data sets, as is seen
in Table V. All models had relatively low R2 values, ranging from 0Ð30 to 0Ð34, with the ARIMA(2,1,2) and
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Figure 2. Autocorrelation function of the peak demand for (a) original demand series and (b) differenced demand series

ARIMA(2,1,1) having the highest coefficients of determination in the training data set. However, it was found
that the ARIMA(2,1,0) model performed best (R2 D 0Ð35) and is shown by the following equation:

Dt D Dt�1 � 0Ð2409�Dt�1 � Dt�2� � 0Ð2168�Dt�2 � Dt�3� �20�

ANNs

The results of the ANN models are shown in Table VI. The learning coefficients were found to produce
the lowest root-mean-square error between the observed and predicted water demand in the training session.
The optimized learning coefficients ranged from 0Ð06 to 0Ð08 for the four models hypothesized.

The results indicate that the best results are a function of previous weekly peak demand, temperature of
the current week and the total rainfall amount of the current week with an R2 value of 0Ð7078 in training
and a value of 0Ð8102 in testing. This ANN model considerably outperformed the linear, multiple linear, and
time-series models. As found in the multiple linear regression models, the occurrence or non-occurrence of
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Table V. ARIMA models hypothesized for forecasting

Parameter Coefficient ARIMA (p,d,q) Model

(1,1,0) (2,1,0) (3,1,0) (1,1,1) (2,1,1) (2,1,2) (3,1,1)

AR(1) ˛1 �0Ð20 �0Ð24 �0Ð28 0Ð49 0Ð52 0Ð10 0Ð52
AR(2) ˛2 �0Ð22 �0Ð27 �0Ð08 0Ð14 �0Ð07
AR(3) ˛3 �0Ð19 �0Ð02
MA(1) �1 0Ð96 0Ð96 0Ð54 0Ð95
MA(2) �2 0Ð40
AIC 1873Ð72 1857Ð40 1843Ð46 1844Ð08 1834Ð57 1836Ð32 1825Ð89

Table VI. ANN models developed to predict peak water demand

Model Parameter Learning coefficient

ANN-1 Dt�1, Tt, Rt 0Ð08
ANN-2 Dt, Tt, Tt�1, 0Ð06
ANN-3 Dt, Tt, Tt�1, BRt 0Ð07
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Figure 3. Observed and predicted water demand from the ANN-1 model

rainfall models did not perform as well as models containing the actual rainfall total. The ANN-3 model did
well during the training session (R2 D 0Ð6848); however, the R2 during testing dropped considerably to 0Ð53.
Figure 3 shows the predicted and observed water demand for the year 2002.

Comparative analysis

The results of the comparative analysis are given in Table VII. It can be observed that the ANN-1 model
performed best, with the highest R2 value of 0Ð8102, lowest Max ARE and the second lowest AARE statistic.
The model with the lowest AARE was the ANN-2 model. The time-series models performed better than the
regression models, with the AARE statistic ranging from 13Ð09 to 14Ð61, and the regression models recorded
values ranging from 17Ð29 to 19Ð25. The regression models recorded a lower range for the Max ARE statistic,
with values ranging from 37Ð45 to 43Ð18, and the time-series value ranged from 35Ð40 to 46Ð43.

Therefore, it is quite clear that the ANN models are far superior than regression and time-series models,
recording the lowest AARE and Max ARE statistics, while recording the highest R2 values in training and
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Table VII. Performance statistics found during testing of all statistical models

Model AARE Max ARE R2

Training Testing

MLR-1 17Ð29 41Ð72 0Ð5394 0Ð5334
MLR-2 19Ð25 43Ð18 0Ð6199 0Ð4446
MLR-3 17Ð76 37Ð45 0Ð5413 0Ð3849
ARIMA(1,1,0) 13Ð43 35Ð40 0Ð3024 0Ð3271
ARIMA(2,1,0) 14Ð31 36Ð28 0Ð3003 0Ð3520
ARIMA(3,1,0) 13Ð86 35Ð93 0Ð3001 0Ð3158
ARIMA(1,1,1) 13Ð25 36Ð41 0Ð3326 0Ð2865
ARIMA(2,1,1) 14Ð61 46Ð43 0Ð3369 0Ð2706
ARIMA(2,1,2) 13Ð09 40Ð50 0Ð3364 0Ð2909
ARIMA(3,1,1) 14Ð00 42Ð69 0Ð3349 0Ð2537
ANN-1 12Ð26 30Ð05 0Ð7078 0Ð8102
ANN-2 10Ð12 31Ð72 0Ð7797 0Ð7555
ANN-3 14Ð19 38Ð11 0Ð6848 0Ð5300
Regressiona 18Ð01 40Ð78 0Ð5669 0Ð4543
Time seriesa 13Ð79 39Ð09 0Ð3205 0Ð2995
ANNa 12Ð19 33Ð28 0Ð7241 0Ð6986

a Average values for the three classes of models.

testing. The regression models had a better correlation between the peak and observed series than the time-
series models; however, they recorded the highest relative error. The time-series models had a poor correlation
with peak and observed time series and robustness (Max ARE); however, the AARE values recorded for these
models are comparable with the ANN models.

CONCLUSIONS

The short-term water demand forecasting models of regression analysis, time-series analysis, and the ANNs
technique have been investigated in this study. The weekly water demand data, along with rainfall and
maximum air temperature from Ottawa, were used to develop and test these models. A split sample
methodology was employed to evaluate the performance of each technique.

Based on the results of this study, it is concluded that the ANN technique substantially outperformed
regression and time-series methods in terms of accuracy of forecasting. It is also concluded that the best
results are obtained when employing previous weekly demand along with the current week’s rainfall and
temperature. Furthermore, the amount of rainfall is more significant than the rainfall occurrence.
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