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Introduction

According to the World Commission on Dams~WCD 2000!,
many large storage projects worldwide are failing to produce
level of benefits that provided the economic justification for t
development. This may be due in some instances to an inord
focus on project design and construction, with inadequate co
eration of the more mundane operations and maintenance
once the project is completed. Performance related to ori
project purposes may also be undermined when new unpla
uses arise that were not originally considered in the projec
thorization and development. These might include munic
industrial water supply, minimum streamflow requirements
environmental and ecological concerns, recreational enh
ment, and accommodating shoreline encroachment and de
ment. Although there may exist some degree of commensura
among these diverse project purposes, there is more often c
and competition, particularly during pervasive drought co
tions. In addition, performance of publically owned reservoir
tems is often restricted by complex legal agreements, cont
federal regulations, interstate compacts, and pressures from
ous special interests.

With construction of new large-scale water storage projec
a virtual standstill in the U.S. and other developed count
along with an increasing mobilization of opposition to large s
age projects in developing countries, attention must focus o
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proving the operational effectiveness and efficiency of exis
reservoir systems for maximizing the beneficial uses of t
projects. In addition, many of the adverse impacts of large sto
projects on aquatic ecosystems can be minimized through
proved operations and added facilities, as demonstrated b
Tennessee Valley Authority~TVA ! ~Higgins and Brock 1999!.
Construction of bottom outlets or selective withdrawal struct
can pass sediments downstream and improve water quality
ditions. Unfortunately, many existing reservoir operational p
cies fail to consider a multifacility system in a fully integra
manner, but rather emphasize operations for individual pro
However, the need for integrated operational strategies con
system managers with a difficult task. Expanding the scope o
working system for more integrated analysis greatly multip
the potential number of alternative operational policies. Th
further complicated by conflicting objectives and the uncertai
associated with future hydrologic conditions, including poss
impacts of climate change.

Optimal coordination of the many facets of reservoir syst
requires the assistance of computer modeling tools to pr
information for rational operational decisions. Computer sim
tion models have been applied for several decades to res
system management and operations within many river ba
Many models are customized for the particular system, but
is also substantial usage of public domain, general-purpose
els such asHEC 5 ~Hydrologic Engineering Center 1989!, which
is being updated asHEC RESSIMto include a Windows-base
graphical user interface~Klipsch et al. 2002!. Spreadsheets a
generalized dynamic simulation models such asSTELLA~High
Performance Systems, Inc.! are also popular~Stein et al. 2001!.
Other similar system dynamics simulation models includePOW-
ERSIM ~Powersim, Inc.! applied by Varvel and Lansey~2002!,
andVENSIM~Ventana Systems, Inc.! applied by Caballero et a
~2001!. These simulation ordescriptivemodels help answerwhat
if questions regarding the performance of alternative opera

strategies. They can accurately represent system operations and
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are useful for Monte Carlo analysis in examining long-term
ability of proposed operating strategies. They are ill-suited, h
ever, toprescribingthe best or optimum strategies when flexi
ity exists in coordinated system operations. Prescrip
optimization models offer an expanded capability to system
cally select optimal solutions, or families of solutions, un
agreed upon objectives and constraints.

The purpose of this paper is to assess the state-of-the-
reservoir system optimization models and consider future d
tions. This is an update of a review that appeared inWater Re
sources Updatepublished by The Universities Council on Wa
Resources~UCOWR! ~Labadie 1997!. The focus is primarily o
optimization of systems of reservoirs, rather than a single r
voir. This is not meant to imply that single reservoir optimiza
is unimportant, but rather the substantial technological challe
and rewards abide with integrated optimization of interconne
reservoir systems. Optimization methods designed to prevail
the high-dimensional, dynamic, nonlinear, and stochastic ch
teristics of reservoir systems are scrutinized, as well as exten
into multiobjective optimization. Heuristic programming meth
using evolutionary and genetic algorithms are described, a
with the application of artificial neural networks and fuzzy ru
based systems for inferring reservoir system operating polic

Overcoming Hindrances to Reservoir System
Optimization

Despite several decades of intensive research on the appli
of optimization models to reservoir systems, authors such a
~1985! and Wurbs~1993! have noted a continuing gap betwe
theoretical developments and real-world implementations.
sible reasons for this disparity include:~1! many reservoir syste
operators are skeptical about models purporting to replace
judgment and prescribe solution strategies and feel more com
able with use of existing simulation models;~2! computer hard
ware and software limitations in the past have required sim
cations and approximations that operators are unwilling to ac
~3! optimization models are generally more mathematically c
plex than simulation models, and therefore more difficult to c
prehend;~4! many optimization models are not conducive to
corporating risk and uncertainty;~5! the enormous range a
varieties of optimization methods create confusion as to whi
select for a particular application;~6! some optimization method
such as dynamic programming, often require customized pro
development; and~7! many optimization methods can only p
duce optimal period-of-record solutions rather than more u
conditional operating rules. Optimal period-of-record solut
are criticized in theEngineer Manual on Hydrologic Engineeri
Requirements for Reservoirs~U.S. Army Corps of Enginee
1997; pp. 4–5!, where it is stated that ‘‘...the basis for the sys
operation are not explicitly defined. The post processing o
results requires interpretation of the results in order to develo
operation plan that could be used in basic simulation and ap
operation.’’

Many of these hindrances to optimization in reservoir sys
management are being overcome through ascendancy of th
cept of decision support systemsand dramatic advances in t
power and affordability of desktop computing hardware and
ware. Several private and public organizations actively inco
rate optimization models into reservoir system manage
through the use of decision support systems~Labadie et al. 1989!.
Incorporation of optimization into decision support systems

reduced resistance to their use by placing emphasis on optimiza-
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tion as a tool controlled by reservoir system managers who
responsibility for the success or failure of the system to ach
its prescribed goals. This places the focus on providing su
for the decision makers, rather than overly empowering com
programmers and modelers.

An example of an optimization model incorporated into a
cision support system~DSS! is theMODSIM river basin networ
flow model ~Labadie et al. 2000!, which is currently being use
by the U.S. Bureau of Reclamation for operational planning in
Upper Snake River Basin, Idaho~Larson et al. 1998!. The
Windows-based graphical user interface~GUI! in MODSIM al-
lows the user to create any reservoir system topology by si
clicking on various icons and placing systemobjectsin any de-
sired configuration on the screen. Data structures embodi
each model object on the screen are controlled by a dat
management system, with formatted data files prepared in
tively and a network flow optimization model automatically
ecuted from the interface. Results of the optimization are
sented in useful graphical plots, or even customized re
available through a scripting language included withMODSIM.
Complex, non-network constraints on the optimization inMOD-
SIM are incorporated through an iterative procedure using
embeddedPERL scripting language.RiverWare ~Zagona et a
1998! affords similar DSS functionality with an imbedded p
emptive goal programming model providing the optimization
pabilities. RiverWarehas been successfully applied to the T
system for operational planning~Biddle 2001!.

Although lacking a generalized Windows-based graphical
interface,CALSIMhas been developed by the California Dep
ment of Water Resources to allow specification of objectives
constraints in strategic reservoir systems planning and oper
without the need for reprogramming~Munevar and Chung 1999!.
Similar to the use ofPERLscript inMODSIM, CALSIMemploys
an English-like modeling language calledWRESL~Water Re
sources Engineering Simulation Language! that allows planner
and operators to specify targets, objectives, guidelines,
straints, and associated priorities, in ways familiar to th
Simple text file output, along with time series and other data
from relational data bases, are passed to a mixed integer
programming solver for period by period solution.CALSIM II
replaces theDWRSIMand PROSIMmodels that required co
tinual reprogramming as new objectives and constraints
specified, for coordinated operation of the Federal Central V
and California State Water Projects.OASIS~HydroLogics, Inc.! is
a similar modeling package toCALSIM that uses an Operatio
Control Language~OCL! for developing linear programmin
models for multiobjective analysis of water resource system

The explosion of readily available information through the
ternet has increased the availability of advanced optimiz
methods and provided freely accessible software and da
sources for successful implementation. Many powerful optim
tion software packages are available through the Internet, su
from the Optimization Technology Center~Northwestern Univer
sity and Argonne National Laboratory, Argonne, Illinois! at
^http://www.mcs.anl.gov/otc/otc.html&. In addition, severa
spreadsheet software packages available on desktop com
include linear and nonlinear programming solvers in their num
cal toolkits. The generalized dynamic programming pac
CSUDP~Labadie 1999! facilitates the use of dynamic progra
ming models, avoiding the need to develop new code for
application.CSUDPsoftware is freeware and can be downloa

at ^ftp://modsim.engr.colostate.edu/distrib/&.
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The power and speed of the modern desktop computer
reduced the degree of simplifications and approximations in
ervoir system optimization models required in the past,
opened the door to greater realism in optimization modeling.
primacy of the system manager over the model is also em
sized in the incorporation of knowledge-based expert system
reservoir system modeling which recognize the value of th
sights and experience of reservoir system operators. Despite
advances, optimization of the operation of an integrated syste
reservoirs still remains a daunting task, particularly with attem
to realistically incorporate hydrologic uncertainties.

Reservoir System Optimization Problem

Objective Function

According to the ASCE Task Committee on Sustainability C
ria ~1998!, ‘‘Sustainable water resource systems are those
signed and managed to fully contribute to the objectives of
ety, now and in the future, while maintaining their ecologi
environmental and hydrological integrity.’’ Objective functio
used in reservoir system optimization models should incorp
measures such as efficiency~i.e., maximizing current and futu
discounted welfare!, survivability ~i.e., assuring future welfare e
ceeds minimum subsistence levels!, and sustainability~i.e., maxi-
mizing cumulative improvement over time!. Loucks~2000! states
that ‘‘sustainability measures provide ways by which we
quantify relative levels of sustainability... One way is to exp
relative levels of sustainability as separate weighted combina
of reliability, resilience and vulnerability measures of various
teria that contribute to human welfare and that vary over time
space. These criteria can be economic, environmental, ecolo
and social.’’ The strategy ofshared vision modeling~Palmer
2000! is useful for enhancing communication among impa
stakeholders and attaining consensus on planning and opera
goals.

A generalized objective function for deterministic reser
system optimization can be expressed as

max ~or min!
r

(
t51

T

a t f t~st ,r t!1aT11wT11~sT11! (1)

wherer t5n-dimensional set of control or decision variables~i.e.,
releases fromn interconnected reservoirs! during period t;
T5length of the operational time horizon;st5n-dimensional stat
vector of storage in each reservoir at the beginning of perit;
f t(st ,r t)5objective to be maximized~or minimized!; wT11(sT11)
5final term representing future estimated benefits~or costs! be-
yond time horizonT; and a t5discount factors for determinin
present values of future benefits~or costs!.

The dynamic nature of this problem reflects the need to re
sent an uncertain future for sustainable water managemen
‘‘... a future we cannot know, but which we can surely influen
~Loucks 2000!. The time stept used in this formulation may b
hourly, daily, weekly, monthly, or even seasonal, dependin
the nature and scope of the reservoir system optimization
lem. Hierarchical strategies may also be pursued whereby r
from long-term monthly or seasonal studies provide input to m
detailed short-term operations over hourly or daily time per
~Becker and Yeh 1974; Divi and Ruiu 1989!.

The objective function may be highly nonlinear, such as

maximizing hydropower generation
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l

f t~st ,r t!5(
i 51

n

K•ei~sit ,si ,t11 ,r it !•h̄it~sit ,si ,t11!•r it•Dt it

(2)

whereei5overall powerplant efficiency at reservoiri as a func
tion of average head and discharge during periodt; h̄it5average
head as a function of beginning and ending period storage
~calculated from the reservoir mass balance or system dyn
equation!, as well as possibly the discharge if tailwater effects
included;K5unit conversion factor; andDt it5number of on-pea
hours related to the load factor for powerplanti. This is a highly
nonconvex function characterized by many local maxima~Tauxe
et al. 1980!, and may be discontinuous and nondifferentiab
loading of individual turbines in the powerplant is conside
Other objective functions related to vulnerability criteria may
tempt to minimize deviations from ideal target storage lev
water supply deliveries, discharges, or power capacities. If
nomic benefit and cost estimates are available for these use
the objective may be to maximize total expected net benefits
operation of the system, but with consideration of long-term
tainability.

Constraints

The system dynamics or state-space equations are written
lows, based on preservation of conservation of mass throu
the system:

st115st1Cr t1qt2 lt~st ,st11!2dt ~ for t51,...,T! (3)

where st5storage vector at the beginning of timet; qt5inflow
vector during timet; C5system connectivity matrix mappin
flow routing within the system;lt5vector combining spills
evaporation, and other losses during timet; anddt5required de
mands, diversions, or depletions from the system. In some fo
lations, diversions are treated as decision variables and inc
in the objective function as related to benefits of supplying w
Accurate calculation of evaporation and other water losses i
term lt(st ,st11) creates a set of nonlinear implicit equations
st11 which can be difficult to evaluate and constitute a nonco
feasible set. Initial storage levelss1 are assumed known and
flow units in Eq.~3! are expressed in storage units per unit ti

Spatial connectivity of the reservoir network is fully descri
by the routing or connectivity matrixC. For the example reservo

Fig. 1. Example reservoir system configuration
system of Fig. 1, the connectivity matrix is
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Additional state variable nodes with zero storage capacity
represent nonstorage locations where inflows and diver
occur. For more complex system configurations that are non
dritic, such as bifurcating systems and off-stream reservo
more complex link-node connectivity matrix is required. Lag
routing of flows can be considered by replacing the termCr t in
Eq. ~3! with (t50

k Ctr t2t , where elements of the routing matric
Ct may be fractions representing lagging and attenuatio
downstream releases.

Explicit lower and upper bounds on storage must be ass
for recreation, providing flood control space, and assuring m
mum levels for dead storage and powerplant operation.

st11,min<st11<st11,max ~ for t51,...,T! (4)

Limits on reservoir releases are specified as

r t,min<r t<r t,max ~ for t51,...,T! (5)

These limits maintain minimum desired downstream flows
water quality control and fish and wildlife maintenance, as we
protection from downstream flooding. In some cases, it ma
necessary to specify these limits as functions of head whe
lowable discharges depend on reservoir storage levels. Addi
constraints may be imposed on thechangein release from on
period to the next to provide protection from scouring of do
stream channels. When evaluating long term historical or
thetic hydrologic sequences, or multiple short-term seque
difficulties may arise in finding feasible solutions that sat
these constraints. In these cases, it may be necessary to
these as explicit constraints and indirectly consider them thr
use of weighted penalty terms on violation of these constrain
the objective function.

Other constraints may represent alternative objectives
must be maintained at desired target levels«:

f̄~s,r !>« (6)

Example targets might include annual water supply requirem
or power capacity maintenance. These targets may be ad
parametrically to compute tradeoff relations between the prim
objective of Eq.~1! and secondary objectives as a means of
viding multiple objective solutions~Cohon 1978!.

The optimization model defined in Eqs.~1!–~6! is challenging
to solve since it is dynamic, potentially nonlinear, and noncon
and large-scale. In addition, unregulated inflows, net evapor
rates, hydrologic parameters, system demands, and econom
rameters should often be treated as random variables, givin
to a complex large-scale, nonlinear, stochastic optimization p
lem. In this formulation, it is assumed that calibration and ve
cation studies have been carried out to assure the model is c
of reasonably reproducing historical energy production, sto
levels, and flows throughout the system. This review exp
several solution strategies, including implicit stochastic optim
tion, explicit stochastic optimization, real-time optimal con
with forecasting, and heuristic programming methods. For m
detailed treatment of these topics, the reader is referred to a
ber of important books written over the years dealing with o
mization of water resource systems in general, and optimal o

tion of reservoirs in particular. These include: Maass et al.~1962!;
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Hall and Dracup~1970!; Buras ~1972!; Loucks et al. ~1981!;
Mays and Tung~1992!; Wurbs ~1996!; and ReVelle~1999!.

Implicit Stochastic Optimization

The solution of Eqs.~1!–~6! may be accomplished by implic
stochastic optimization~ISO! methods, also referred to as Mo
Carlo optimization, which optimize over a long continuous se
of historical or synthetically generated unregulated inflow
series, or many shorter equally likely sequences~Fig. 2!. In this
way, most stochastic aspects of the problem, including spatia
temporal correlations of unregulated inflows, are implicitly
cluded and deterministic optimization methods can be dir
applied. The primary disadvantage of this approach is that op
operational policies are unique to the assumed hydrologic
series. Attempts can be made to apply multiple regression a
sis and other methods to the optimization results for develo
seasonal operating rules conditioned on observable inform
such as current storage levels, previous period inflows, a
forecasted inflows. Unfortunately, regression analysis may r
in poor correlations that invalidate the operating rules, an
tempting to infer rules from other methods may require exten
trial and error processes with little general applicability.

Linear Programming Models

Since ISO models can be extremely large-scale, coveri
lengthy time horizon, it is critical that only the most effici
optimization methods are applied. One of the most favored

Fig. 2. Implicit stochastic optimization~ISO! procedure
mization techniques for reservoir system models is the simplex

© ASCE / MARCH/APRIL 2004
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method of linear programming and its variants~Nash and Sofe
1996!. These models require all relations associated with
~1!–~6! to be linear or linearizable. The advantages of linear
gramming~LP! include:~1! ability to efficiently solve large-sca
problems;~2! convergence to global optimal solutions;~3! initial
solutions not required from the user;~4! well-developed dualit
theory for sensitivity analysis; and~5! ease of problem setup a
solution using readily available, low-cost LP solvers. Recen
ternatives to the simplex method, such as the affine scaling
interior projection methods~Terlaky 1996!, are particularly attrac
tive for solving extremely large-scale problems.

Hiew et al.~1989! applied ISO using LP to the eight-reserv
Colorado-Big Thompson~C-BT! project in northern Colorad
Use of a 30 year historical hydrologic record of monthly unre
lated inflows to the system resulted in a linear programming p
lem with 12,613 variables and 5,040 constraints. Multiple reg
sion analysis was applied to the LP model results to pro
optimal lag-one storage guide curves:

st115Āst* 1B̄qt211 c̄ (7)

where st* 5optimal storage levels obtained from the linear p
gramming solution;qt5observed hydrologic inflows; and cor
lation matricesĀ, B̄ and vectorc̄ are calculated from multip
regression analysis performed on the LP results. Coefficien
determination obtained from this analysis ranged from 0.79
0.996 for the larger reservoirs, with the remaining reservoir
ther small or with water levels only allowed to vary a few feet
year. Simulation of the system operations using the optimal
age guide curves of Eq.~7! confirmed their validity. This stud
was successful because of the ability of linear models to a
rately represent the system behavior, along with the fortunate
culation of high correlation coefficients obtained from the m
tiple regression analysis. For other systems, these advantage
not be in evidence.

Other extensions of linear programming into binary, inte
and mixed-integer programming may be valuable for represe
highly nonlinear, nonconvex terms in the objective function
constraints~e.g., Trezos 1991!, but these methods are consid
ably less efficient computationally and would likely be intracta
for use in ISO. Needham et al.~2000! applied mixed integer lin
ear programming to deterministic flood control operations in
Iowa and Des Moines Rivers, but noted the potential for ex
sive computer times when extended to stochastic evaluation
study came to the rather counterintuitive conclusion that co
nated operation of reservoir systems does not necessarily im
performance, which stands in stark contrast with other studie
have shown just the opposite~e.g., Shim et al. 2002!.

Piecewise linear approximations of nonlinear functions
often used inseparable programmingapplications and solve
with various extensions of the simplex method, although prob
size can become excessive in some cases. Functions of mor
one variable can be approximated using multilinear interpola
methods over a multidimensional grid. For minimization pr
lems, these functions must be convex; otherwise, more time
sumingrestricted basis entrysimplex algorithms must be appli
which fail to guarantee convergence to global optima. Cra
and Dandy~1993! applied separable programming to the mu
reservoir Metropolitan Adelaide water supply system in Austr

Network Flow Optimization Models

It is evident from Fig. 1 that an interconnected reservoir sys

can be represented as a network of nodes and links~or arcs!.
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Nodes are storage or nonstorage points of confluence or
sion, and links represent reservoir releases, channel or pipe
carryover storage, and evaporation and other losses. If all
tions in Eqs.~1!–~5! are linear, then the following dynamic, mi
mum cost network flow problem results:

minimize (
t51

T

(
,PA

c,tx,t (8)

subject to

(
j POi

xjt2 (
kPI i

xkt50 ~ for all i PN; for all t51,...,T!

(9)

l ,t<x,t<u,t ~ for all ,PA; for all t51,...,T! (10)

whereA5set of all arcs or links in the network;N5set of nodes
Oi5set of all links originating at nodei ~i.e., outflow links!;
I i5set of all links terminating at nodei ~i.e., inflow links!;
x,t5flow rate in link , during period t; c,t5costs, weightin
factors, or priorities per unit of flow rate in link, during periodt;
andl ,t andu,t5lower and upper bounds, respectively, on flow
link ,.

Fig. 3 illustrates a fully dynamic network where the horizo
arcs represent carryover storage~i.e., st) in the same physic
reservoir from one period to the next, whereas the vertical
are flows, releases, and diversions~i.e., r t) during the curren
period. Eqs.~8!–~10! define apurenetwork formulation where a
network data can be represented by a set of arc param
@ l ,t ,u,t ,c,t#. For fully circulating networks, additional artifici
nodes and links must be added for satisfying overall mass ba
throughout the entire network. Comparative studies by Kuc
~1993! and Ardekaaniaan and Moin~1995! have shown the du
coordinate ascentRELAXalgorithm ~Bertsekas and Tseng 199!
to be the most efficient network solver, as compared to pri
based algorithms and variations on the out-of-kilter method~Ford
and Fulkerson 1962!.

Several network algorithms allow designation of node su
and demand@i.e., entry of values other than zero on theright-
hand sideof Eq. ~9!# without requiring specification of artifici
nodes and links, although this is only possible when no dem
shortages occur. For so-callednetworks-with-gains, Eq. ~9! must
be adjusted with coefficients not equal to21, 0, or11 to allow
for channel losses, evaporation losses, and return flows. F
extensions intogeneralized networksallow inclusion ofside con
straints @i.e., Eq.~6!# that violate the pure network structure.

Fig. 3. Illustration of dynamic network showing carryover stor
arcs
of these deviations from the pure network format exact a compu-
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tational price. In spite of this, Sun et al.~1995! claim that the
generalized network solver is ‘‘11–17 times faster’’ than solu
by a state-of-the-art revised simplex algorithm. For pure netw
problems, this speedup factor may increase to more than
orders of magnitude, while requiring significantly less comp
memory. Hsu and Cheng~2002! applied a similar generalize
network flow optimization model for long-term supply-dema
analysis in a river basin in northern Taiwan. Although the res
show improvement over previous simulation studies, the pe
foreknowledge assumptions in the deterministic evaluation
lack of development of conditional operating rules diminish
value of the study.

Fredericks et al.~1998! show that many aspects of networ
with-gains and generalized networks can be solved through
cessive solution of pure network problems with adjusted
parameters, ultimately converging to solution of the original p
lem. This approach may be more efficient if the speedup facto
pure networks is compensated by the need for a few iteratio
achieve convergence. Labadie and Baldo~2001! report an addi
tional advantage of the successive solution approach that a
the need for computationally expensive unit priority separa
procedures~Israel and Lund 1999! for correct allocation of flow
according to water rights and other prioritizing mechanisms.
successive solution procedure has a further advantage of all
consideration of non-network side constraints and the final
vergent solution still provides node and arc prices as dual
ables that are useful for sensitivity analysis.

Lund and Ferreira~1996! applied a fully dynamic networ
flow algorithm HEC-PRM to the mainstem Missouri River R
ervoir system. Although the network itself is not large~i.e., six
storage nodes and six intermediate flow nodes!, the system i
optimized in monthly time steps over a 90 year historical pe
resulting in an immense dynamic network. The objective func
is approximated by convex, piecewise linear penalty funct
characterized through specification of multiple links connec
two nodes, with bounds and unit costs defined by flow limits
slopes of each linear piece. In this study, ISO procedures o
forming regression analyses on operating rules that conditio
timal releases on total system storage resulted in poor corre
coefficients. Empirical trial-and-error processes are invo
which ultimately result in reasonable rules when evaluated u
a simulation model for the system operation.

Nonlinear Programming Models

Many reservoir system optimization problems cannot be rea
cally modeled using piecewise linearization, and must be atta
directly as nonlinear programming problems, particularly with
clusion of hydropower generation in the objective function an
constraints. Nonlinear programming~NLP! algorithms generall
considered the most powerful and robust are:~i! successive~or
sequential! linear programming~SLP!; ~ii ! successive~or sequen
tial! quadratic programming~SQP! ~or projected Lagrangia
method!; ~iii ! augmented Lagrangian method@or method of mul
tipliers ~MOM!#; and ~iv! the generalized reduced gradi
method~GRG!. All require that the functions in Eqs.~1!–~6! are
differentiable, which may be problematic in some cases, pa
larly for hydropower systems. Explicit calculation of derivati
is unnecessary, however, with application of automatic diffe
tiation methods~Sinha and Bischof 1998!.

Hiew ~1987! performed a comprehensive comparative eva
tion of the SLP, GRG, and a feasible direction form of SQP

hydropower systems of up to seven reservoirs, and concluded tha
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the SLP method was by far the most efficient~by up to an order o
magnitude in computational speed! among the various nonline
programming algorithms. Grygier and Stedinger~1985! also con
cluded that SLP was the most efficient of the mathematical
gramming algorithms evaluated. In SLP, all nonlinear funct
are linearized around an initial or nominal solution using the
two terms of the Taylor series expansion. Successive solution
confined to specifiedtrust regionsor step bounds to avoid ins
bilities in convergence. Solution of the resulting linear progr
ming problem then provides the basis for relinearization of
nonlinear functions, with the step bounds appropriately red
as the process converges. A disadvantage of SLP is that ‘‘alth
intuitively appealing and popular because of the availabilit
efficient linear programming solvers, ...~the method is!... not guar
anteed to converge’’~Bazarra et al. 1993!.

Martin ~1983! applied the SLP method to the Arkansas-Wh
Red River system of Texas, noting that the linearized subp
lems could be efficiently solved using a minimum cost netw
flow solver. A fully dynamic network model is used, but soluti
are generated over a 5 year period by a moving overlapping
dow approach that finds optimal dynamic solutions over su
sive 2 year periods. The rationale for limiting the operatio
interval in each optimization is based on the likelihood of
storage projects in the system filling based on carryover st
capability. Once a project fills, all memory of previous operat
is lost; hence, fully dynamic solutions over extremely long t
horizons, such as in Lund and Ferreira~1996!, may not be nece
sary. Barros et al.~2003! applied the SLP technique to the B
zilian hydropower system, one of the largest in the world.
study also confirmed the excellent performance of SLP, bo
accuracy and computational efficiency.

Successive quadratic programming~SQP! relies on the com
putational efficiency of modern quadratic programming~QP! al-
gorithms and the ability of quadratic expansions to better app
mate nonlinear functions than linear relations. Instead
linearizing the objective function, a quadratic approximatio
performed on the Lagrangian function for the problem, altho
the constraints continue to be linearized. Successive quadra
proximations converge to a Karush-Kuhn-Tucker~KKT ! point
satisfying the necessary conditions for an optimal solution~Baz-
arra et al. 1993!. To avoid a potentially time consuming solut
of a large-scale QP problem over many time intervals, Ar
et al. ~1994! proposed a procedure that takes advantage o
special structure of reservoir system optimization problems
provides a highly efficient solution algorithm for the QP probl
Numerical effort grows only linearly with the length of the ope
tional horizonT since the method decomposes the problem
subproblems for each time step. Without this modification,
unlikely that SQP is suitable for ISO of reservoir systems du
exponential growth of computer time with the number of t
steps.

Tejada-Guibert et al.~1990! applied SQP to a five-reserv
portion of the Central Valley Project~CVP! of California using
MINOS ~Murtagh and Saunders 1987!. The objective functio
includes nonlinear terms representing operating costs avoide
projects dependable hydropower capacity for each power
Constraints in the form of Eq.~6! include nonlinear functions
energy production per unit release. A 3 year optimization
monthly time steps resulted in a problem with 1,122 variables
1,764 constraints. The authors note that computer execution
increase approximately to the square of the length of the o
tional period, which does not bode well for application of I

tover long time periods. Barros et al.~2003! also applied SQP
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using a newer version ofMINOS~Murtagh and Saunders 1995! to
the large-scale Brazilian hydropower system, and compared
formance with SLP. Although it was found to produce more
curate results, computational requirements restricted its use
timization over limited real-time forecast horizons rather than
implicit stochastic optimization over lengthy time horizons.

Arnold et al. ~1994! compared SQP with the augmented
grangian method or method of multipliers~MOM!. MOM uses a
Lagrangian function similar to SQP, but augmented with e
penalty terms. The original constrained nonlinear optimiza
problem is replaced with a sequence of easier-to-solve un
strained nonlinear optimization problems. Arnold et al.~1994! ap-
plied SQP and MOM to the four-reservoir Zambezi River sys
in southern Africa over a 2 year period in monthly time steps. T
model includes realistic nonlinear terms for hydropower pro
tion and evaporation calculations, resulting in a large-scale
namic optimization problem with nonlinear objective funct
and constraints. Results show that MOM converged more ra
than SQP, but to a somewhat less accurate solution.

The generalized reduced gradient~GRG! method is essential
a constrained gradient search technique that solves areducedop-
timization problem with respect to the independent decision
ablesr t . The storage state variablesst are easily determined fro
Eq. ~3! for a given set of decision variablesr t . The MINOSop-
timization package~Murtagh and Saunders 1995! invokes GRG
for nonlinear programming problems with linear constraints.
though the method can theoretically be applied to nonlinear
straints through successive linearization, it appears to be le
ficient in this case. Unver and Mays~1990! applied GRG to
optimal flood control in the Highland Lakes system of the Lo
Colorado River Basin, Texas. GRG had to be combined with
alty function methods similar to MOM to properly treat the
equality constraints on the dependent reservoir storage var
st .

Peng and Buras~2000! also applied GRG~using MINOS!
within an ISO scheme to the five major upstream lakes in
West Branch Penobscot River, Maine. Similar to the approa
Martin ~1983!, the GRG optimization is performed in month
time steps over a moving 12 month forecast window. A synth
streamflow generation model produces multiple, equally li
inflow sequences over the next 12 months, starting from the
rent month, with the SQP optimization performed for each
quence. Although operational decisions are obtained for

Fig. 4. Illustration of reservoir syste
month, only the current month decisions are implemented. Con-

JOURNAL OF WATER RESOURCES
sistent with the problem of any ISO application, since un
decisions are generated for each synthetic inflow sequenc
decisions are represented as randomized release rules th
difficult to implement.

Discrete Dynamic Programming Models

Next to linear programming, dynamic programming has bee
most popular optimization technique applied to water resou
planning and management in general, and reservoir operatio
particular ~Yakowitz 1982!. Dynamic programming~DP! effec-
tively exploits the sequential decision structure of reservoir
tem optimization problems~Fig. 4!. As originally developed in it
general form by Bellman~1957!, DP decomposes the origin
problem into subproblems that are solved sequentially over
stage~i.e., time period!. This represents a significant advant
for ISO since computational effort increases only linearly with
number of stages, whereas most of the previous methods d
exponential increases. The earliest application of ISO applie
namic programming to a single reservoir operational prob
~Young 1967!. In its discrete form, DP overcomes difficulties w
functional relationships in the objective and constraints tha
nonlinear, nonconvex, and even discontinuous. It is also
readily extensible to explicit stochastic optimization proble
and existence of constraints such as Eqs.~4! and ~5! actually
improve solution efficiency, in contrast with the other meth
discussed.

Solution of Eqs.~1!–~5! involves calculating an optimal retu
or cost-to-gofunctionFt(st) representing the maximum return~or
minimum cost! accumulated from the current period~stage! t
through the final periodT, conditioned on a given initial stora
state vectorst . Bellman’sprinciple of optimality~Bellman 1957!
states that:no matter what the initial stage and state of a M
kovian decision process, there exists an optimal policy from
stage and state to the end. For all discrete combinations ofst , the
function Ft(st) is optimized recursively over each time period
a ~usually! backwards sequence fort5T, T21,...,1:

Ft~st!5max ~or min!
r t

@a t f t~st ,r t!1Ft11~st11!# (11)

subject to Eqs.~3!–~5!. Recursive calculations are initiated w

FT11~sT11!5aT11wT11~sT11! (12)

timization as sequential decision process
m op
DP takes advantage of the temporal separability of the problem
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defined by Eqs.~1!–~5!, although inclusion of Eq.~6! invalidates
this separability. Consideration of the latter requires additi
state variables in the formulation or application of Lagrange
tiplier techniques~Dreyfus and Law 1977!. Another advantage o
DP is the calculation of flexiblefeedbackor closed-loopoptimal
policiesr t* (st) conditioned on the current system statest . Except
for optimal control theory, the development of optimal feedb
policies is unique to dynamic programming. Optimal stor
guide curvesst11* (st) can also be calculated, which may be m
useful to reservoir system operators than optimal release po

Discrete dynamic programming increments reservoir sto
levels in the vectorst into a finite number of levels and th
performs conditional optimization in Eq.~11! over all possible
discrete combinations of storage levels. Global optimality,
discrete sense, is assured if the optimization in Eq.~11! is per-
formed via exhaustive enumeration over all discrete combina
of releases. Since this optimization is performed conditionall
all discrete combinations of storage vectorst , the specter of th
curse of dimensionality@a term originally coined by Bellma
~1961!# arises. Assuming an average ofm discretization levels fo
each ofn reservoirs, computational time and storage requirem
are proportional tomn. For system dimensions beyond three c
nected reservoirs, rapid access memory requirements exce
capacity of modern computing hardware.

Various modifications have been performed on the origina
formulation to mollify thecurse of dimensionalityof discrete dy
namic programming. These include:~i! coarse grid/interpolatio
techniques;~ii ! dynamic programming successive approximat
~DPSA!; and ~iii ! incremental dynamic programming~IDP! or
discrete differential dynamic programming~DDDP!. Coarse grid
interpolation methods attempt to reduce the intensive
memory and computational requirements of evaluating and
ing the optimal return or cost-to-go functionFt(st) for all discrete
combinations of the vectorst by using larger discretization inte
vals. Solution accuracy is retained by interpolating the func
over the coarser grid structure. This approach was first sugg
by Bellman ~1957!, and later extended by Johnson et al.~1993!
and others to sophisticated interpolation methods using high
piecewise polynomial functions. Although these methods alle
the dimensionality problem, they fail to vanquish it complete

Bellman and Dreyfus~1962! originally suggested the dynam
programming successive approximations~DPSA! technique, late
generalized by Larson~1968!. DPSA decomposes the multid
mensional problem into a sequence of one-dimensional prob
by optimizing over one state variable at a time, with all other s
variables maintained at given current values. This requires
the state dynamics equations@Eq. ~3!# must beinvertedto explic-
itly solve for releasesr t as a function of specified beginning a
ending storage levelsst , st11 . This results in accurate calculati
of evaporation losses without the need for iterative proced
and allows for the development of optimal storage guide cu

Although convergence to a global optimum is guaranteed
convex problems, convergence to even local optima with DPS
not assured for nonconvex problems. Collins~1977! proposed
two-at-a-timeDPSA method that adjusts the state variable
overlapping pairs. DPSA and its extensions~e.g., IDPSA, which
essentially combines IDP and DPSA by solving over one sta
a time, but confining each state to an incremental corridor! has
been applied to many multiple reservoir systems, including
Central Valley Project~Yeh and Trott 1972! and the Tenness
Valley Authority ~Giles and Wunderlich 1981!. DPSA was applie
by Shim et al.~2002! for real-time flood control operations in t

Han River Basin, Korea. An iterative approach involving succes-
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e

sive solutions of the DPSA algorithm with updated estimate
river reach routing coefficients allowed full incorporation of ro
ing in the optimization over hourly time steps. DPSA was
applied by Yi et al.~2003! for optimal hourly scheduling of hy
dropower units in the Lower Colorado River Reservoir Sys
Comparison of the DPSA solutions with a large-scale mixed
teger programming~MIP! formulation provided comparable a
curacy, but at a fraction of the computer execution time requ
by the MIP model.

Incremental dynamic programming~IDP! was first introduce
by Larson~1968!, and applied by Hall et al.~1969! to a portion o
the Central Valley Project in northern California. Discrete dif
ential dynamic programming~DDDP! was later offered b
Heidari et al.~1971!, but closely resembles the IDP techniq
These algorithms address the dimensionality problem by res
ing the state-space to a corridor around a current given so
st

(k) . For each state variable, only three discrete values a
lowed for a specified storage incrementDsi :@sit

(k)2Dsi ,sit
(k) ,sit

(k)

1Dsi #. If new solution trajectories are within the boundarie
the corridor, the optimum has been found. Otherwise, a new
ridor is defined around the new solution and the process re
The computational effort for each solution is now proportiona
3n.

Difficulties with IDP or DDDP methods are:~1! as with
DPSA, the inverted form of the state equations@Eq. ~3!# must be
used to avoid interpolation problems over the restricted corr
~2! the method is highly sensitive to initially assumed sto
trajectoriesst

(0) ; and~3! discretization intervalsDsi must be care
fully selected to provide accurate solutions at reasonable co
tational expense. One attractive approach is to initially s
large values, which can then be refined as the neighborhood
optimum trajectory is approached. Unlike DPSA, convergen
a discrete local optimum, under reasonably mild assumptio
guaranteed. As with DPSA, global optima are only attainabl
convex problems. The generalized dynamic programming
ware packageCSUDP~Labadie 1999! employs a strategy, orig
nally suggested by Nopmongcol and Askew~1976!, whereby so
lutions are initiated with the DPSA technique, which rap
converge to the neighborhood of the optimum. The IDP/DD
method then either further refines this solution or confirms th
is a true~discrete! local optimum.

Karamouz et al.~1992! applied discrete dynamic progra
ming to a multiple site reservoir system in the Gunpowder R
Basin near Baltimore. A total of 1,500 months of multisite, s
thetic streamflow data were input into the discrete DP mode
ISO. A linear operating rule structure similar to Eq.~7! was
adopted, with the authors noting that more complex nonli
rules have little advantage. To overcome difficulties in the m
tiple regression analysis when correlation coefficients are
successive solutions are bounded to be within a certain perce
of the optimal operating rules found from the previous imp
stochastic DP run. With each successive iteration, correlatio
efficients for the operating rules increase until the process t
nates with consistent operating rules. This process performe
for the two-site system considered by the authors, but exten
to larger reservoir systems may be difficult.

Differential Dynamic Programming Models

Jacobson and Mayne~1970! developed differential dynamic pr
gramming ~DDP! to alleviate dimensionality difficulties in D
through use of analytical solutions rather than resorting to

cretization of the state-space. Murray and Yakowitz~1979! ex-
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tended this approach to more realistic constrained problem
differentiability of the objective function and constraints is s
required. DDP can be thought of as an SQP methodology sp
cally designed to exploit the sequential decision structure of p
lems such as reservoir system optimization. This implies
computational effort increases approximately linearly with
number of stages, making it a feasible strategy for ISO. In a
tion, Sen and Yakowitz~1987! contend that DPSA and IDP me
ods can only hope for linear rates of convergence, whereas s
linear or even quadratic convergence similar to Newton-
methods can be expected with DDP.

Explicit analytical solutions can be obtained for Eq.~11! if the
objective function is quadratic and any inequality constraints@i.e.,
Eqs.~4!–~6! for the deterministic case# are relaxed~Dreyfus and
Law 1977!. Under these assumptions, the DP optimal retur
cost-to-go functionFt(st) is a quadratic function ofst and is eas
ily represented analytically rather than numerically as in stan
DP. For the constrained case, Murray and Yakowitz~1979! pro-
pose the solution of a constrained quadratic programming~QP!
problem derived by approximating the nonlinear objective fu
tion f t(st ,r t) using the first three terms of the Taylor series
pansion around a current nominal state trajectoryst

(k) at iteration
k. Sen and Yakowitz~1987! suggest replacing the Hessian ma
of second partial derivatives in the Taylor series expansion
first order approximations based on quasi-Newton updates
guarantee convexity of the QP problem.

Jones et al.~1986! applied the DDP approach to ISO of t
Mad River system in northern California. A total of 101 sets o
years of stochastically generated monthly inflows were inp
the DDP algorithm for minimizing downstream water defic
The authors note that a linear programming formulation of
same problem required 16 times the computer processing tim
the DDP algorithm. Rather than applying regression analys
infer optimal long-term release policies, release rules were c
tioned on ranges of current period inflow and storage with
ceedence probabilities of 0.95.

Discrete-Time Optimal Control Theory

All of the methods discussed thus far are categorized as m
ematical programming techniques. Optimal control theory~OCT!
represents a different approach to optimization, but in its disc
time form, shares many similarities with mathematical progr
ming. Modern optimal control theory has its origins with Pontr
gin’s maximum principle~Pontryagin et al. 1962!, which was
originally derived for optimal control of dynamic systems g
erned by differential equations under control constraints.
continuous-time problems, the maximum~or minimum! principle
states that a particular decision and state trajectory is optim
there exists an adjoint trajectory such that the Hamiltonian f
tion is maximized~or minimized!. The Hamiltonian is formed b
appending the system dynamics equations to the original o
tive function usingcostateor adjoint variables, which in math
ematical programming parlance, are Lagrange multipliers.
results in a difficulttwo-point boundary valueproblem, particu
larly with inclusion of state-space constraints. Pontryagin e
~1962! showed that constraints on the decision variables ca
explicitly maintained in the optimization, although certain c
vexity conditions are required in the discrete-time case.

Extensions of discrete OCT to reservoir system optimiza
problems governed by difference equations@i.e., Eq.~3!# strongly
resemble the MOM method of nonlinear programming, but

important differences. Similar to MOM, an augmented Lagrang-
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-

ian function is formulated, but with Lagrange multipliers o
associated with the system dynamics equations and penalty
assigned to the state-space constraints@Eq. ~4!#. Formulations at
tempting to include the state-space constraints with Lagr
multipliers result in complexcorner or jump conditionsthat are
difficult to evaluate~Grygier and Stedinger 1985!.

Hiew ~1987! compared the performance of the OCT algori
with SLP, SQP, and the GRG nonlinear programming algori
for a multireservoir hydropower system. OCT outperformed a
the other methods in computational speed, was compara
solution accuracy, and least sensitive to the initial solutio
compared with other methods. Papageorgiou~1988! applied OCT
to multireservoir systems optimization and found computer
requirements increased only linearly with the number of re
voirs.

Mizyed et al. ~1992! applied OCT to the large 11-reserv
system in the Mahaweli Valley of Sri Lanka. The nonlinear
jective maximizes firm energy production subject to irrigation
mand requirements. A 32 year historical record of monthly
flows was used for ISO, but with irrigation demands set at m
monthly values. Multiple regression analysis was applied to
OCT optimization results for determining optimal regression
efficients in an operating rule similar to Eq.~7!. In this case
matricesĀ, B̄ were assumed to be diagonal~i.e., no spatial cros
correlations considered!, although additional regression ter
were added for total storage, total inflow, and total irrigation
mand. This resulted in reasonable coefficients of determinatir 2

varying from 0.6 to 0.9 for all reservoirs.

Explicit Stochastic Optimization

Explicit stochastic optimization~ESO! is designed to operate d
rectly on probabilistic descriptions of random streamflow
cesses~as well as other random variables! rather than determin
istic hydrologic sequences. This means that optimizatio
performed without the presumption of perfect foreknowledg
future events. In addition, optimal policies are determined wit
the need for inferring operating rules from results of the opt
zation~Fig. 5!. Unfortunately, ESO techniques as applied to m
tireservoir systems are more computationally challenging
ISO, as recognized early by Roefs and Bodin~1970!.

For ESO, Eq.~1! is now formulated as

max ~or min!
r

E
q
F(

t51

T

a t f t~st ,r t ,qt!1aT11wT11~sT11!G
(13)

where E5statistical expectation operator. Alternative formu
tions based on Markov decision theory consider infinite time
rizons where final terms defining future benefits or costs ar
required~Bertsekas 1987!. The goal here is to determine lon
term ~seasonally! stationary optimal operational policies.

Since inflowsqt are now regarded as random variables, s
age levels calculated via Eq.~3! are also random, meaning th
Eqs.~4! and ~5! must be expressed probabilistically:

Pr@si ,t11>si ,t11,min#>~12a! (14)

Pr@si ,t11<si ,t11,max#>~12b! ~ for i 51,...,n; t51,...,T!
(15)

where a and b5desired levels ofrisk of violating these con
straints, which may vary by season. In this case, unregulate
flows are assumed the dominant source of uncertainty and c

represented by appropriate probability distributions. These may
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be parametric or nonparametric based on frequency ana
Other random variables that may be defined include econ
parameters in the objective function, demands, and climatolo
variables impacting net evaporation and other losses. Unregu
inflows may be highly correlated spatially and/or temporally.
short-term operational problems, inflows may be generated
forecasting models, in which case the primary source of u
tainty is the forecast error.

Chance-Constrained Programming Models

The cumulative probability distribution function for independ
unregulated inflows to sitei during periodt is

Fit~x!5Pr@qit<x# (16)

Inserting Eq.~3! into Eqs.~14! and ~15! gives

Pr@sit2Cir t1qit2 l it2dit>si ,t11,min#>~12a! (17)

Pr@sit2Cir t1qit2 l it2dit>si ,t11,max#<~12b! (18)

where Ci represents rowi of the routing matrix anda,
b5acceptablerisks of failure to satisfy the constraints. The
expressions can be rearranged as

Pr@qit<si ,t11,min2sit1Cir t1 l it1dit #<a (19)

Pr@qit<si ,t11,max2sit1Cir t1 l it1dit #>~12b! (20)

and can now be expressed in the following deterministic
equivalent form:

Cir t<sit2si ,t11,min2 l it2dit1Fit
21~a! (21)

Cir t>sit2si ,t11,min2 l it2dit1F21~12b! (22)

Fig. 5. Explicit stochastic optimization~ESO! procedure
i t
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These constraints essentiallytighten the restrictions on reservo
releases as the desiredrisk levelsa, b decrease, thereby enco
aging more conservative operational strategies. However,
risk constraints areconditionedon the current storage levelsst ,
which are also random variables. ReVelle et al.~1969! attempted
to remove this dependency by restricting release policies
simple linear decision rule~LDR!

r it5sit2bit (23)

where optimization is now performed on the parametersbit . Sev-
eral extensions to the LDR have been developed~e.g., Houck
et al. 1980; Halliburton and Sirisena 1984; Stedinger 1984!, but
its extreme simplicity appears to be incompatible with com
reservoir system operations.

Loucks and Dorfman~1975! showed that chance constrain
models are overly conservative and generate operational rule
exceed the prescribed reliability levels. This means thata, b do
not represent the true risk associated with violating storage
straints, but can only be regarded as parameters that influen
aversion in the solution. True risk must be estimated by perf
ing Monte Carlo analyses on the proposed operational pol
Simonovic and Marino~1982! developed a reliability program
ming ~RP! model that assigns economic loss estimates to the
parameters and incorporates them as decision variables
optimization. Difficulties in creating these economic loss e
mates has limited the use of RP methods.

Stochastic Linear Programming Models

The deterministic LP formulation of the reservoir system opt
zation problem of Eqs.~1!–~6! assumes that all future inflows a
other random phenomena are known with certainty. A more
istic assumption is that first period decisions can be made
certainty, but future decisions and their consequences are ra
The so-calledtwo-stageproblem is formulated to minimize tot
costs~or maximize net benefits! from first stage decisions, pl
the total expected costs~or net benefits! of future decisions, whic
depend on the first stage decisions and future random inflo
alizations~Kall and Wallace 1995!. If several scenarios of futu
streamflow time series have been generated, each with a
sumed probability of occurrence, then adeterministic equivalen
problem can be formulated for each possible inflow sequenc~or
scenario!. Future reservoir release decisions are specified
would be made as a consequence of the occurrence of eac
nario. Only the first stage decisions are actually impleme
since future decisions are not known with certainty. Follow
implementation of the first stage decisions, the problem is r
mulated starting with the next period decisions and solved
the remainder of the operational horizon.

The difficulty with this formulation is that an ample numbe
possible scenarios results in an extremely large-scale linea
gramming problem. This can be reduced through applicatio
Benders decomposition which projects the original large-s
problem onto the coupling variables, solves the resulting sm
subproblems via a dual formulation, and then solves amaster
problem which coordinates the subproblem solutions until
overall optimum is found for the original problem. Jacobs e
~1995! applied stochastic linear programming using Benders
composition to the Pacific Gas and Electricity hydropower sy
in northern California. Generalized network flow optimizatio
applied to the multireservoir system, with nonlinearities in
power calculations modeled using piecewise linear approx

tions. Decomposition of the large-scale linear programming prob-
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lem into many smaller network flow optimization problems
sults in significant computational savings over attempts at d
solution. Seifi and Hipel~2001! applied two stage stochastic l
ear programming with recourse to the Great Lakes Reservoir
tem using an interior point method for solving the resulting la
scale LP.

The explicit stochastic linear programming model origin
proposed by Thomas and Watermeyer~1962! discretizes storag
and releases into given discrete levels, with discrete probab
of occurrence of those levels stipulated as the decision vari
in this formulation. Expected benefits of reservoir operations
maximized, with ‘‘optimal’’ probabilities of release levels con
tioned on current discrete storage and inflow levels. Unfo
nately, this formulation produces what are termed ‘‘random
release rules’’ represented by probabilities of a particular re
decision being made rather than actual release guidelines.
the combinations of discrete joint probabilities that must be
culated results in an extremely large-scale linear program
model, particularly when applied to multireservoir systems.
tailed discussion of this approach and its application to mult
ervoir systems can be found in Loucks et al.~1981!.

Extensions of nonlinear programming to the stochastic
for multireservoir systems are rare due to the intense com
tional requirements. Ahmed and Lansey~2001! proposed
method based on the parameter iteration method of Gal~1979!
involving quadratic approximation of future benefits and par
eterization of operating policies for hydropower systems. Com
tational requirements are alleviated through a Lagrangian de
position procedure, but the authors fail to mention the likelih
of existence ofduality gapsin this formulation due to the no
convexity of the objective function.

Stochastic Dynamic Programming Models

Stochastic dynamic programming~SDP! models attempt to solv
the following DP recursion relation adapted to stochastic p
lems

Ft~st!5max ~or min!
r t

E
qt

@a t f t~st ,r t ,qt!1Ft11~st11!# (24)

Often referred to as a Markov decision process, this formula
assumes that unregulated inflows are temporally uncorrelate
though spatial correlation may be included. Extensions to l
models requires specification of previous period inflows as a
tional state variables:

Ft~st ,qt21!5max ~or min!
r t

E
qtuqt21

@a t f t~st ,r t ,qt!

1Ft11~st11 ,qt!# (25)

Simplified decision rules need not be assumed, and only
ability distributions are used for deriving optimal policies with
presumption of foreknowledge of future inflow events. Stea
state feedback control policiesr t* (st ,qt21) are generated whic
allow reservoir system operators to incorporate hydrologic un
tainty into reservoir release decisions. These policies are c
lated by the value iteration or policy iteration methods~Howard
1960!. The latter method is referred to as successive approx
tions by Dreyfus and Law~1977!, whereby seasonal cycles of t
SDP model are solved until optimal policies become statio
for each seasont ~e.g., calendar month!.
The so-called inverted form of the SDP formulation

JOURNAL OF WATER RESOURCES P
Ft~st ,qt21!5max ~or min!
st11

E
qtuqt21

@a t f t~st ,r t ,qt!

1Ft11~st11 ,qt!# (26)

provides optimal storage guidecurvesst11* (st ,qt21). Labadie
~1993a! developed optimal storage guide curves for operatio
Valdesia Reservoir in the Dominican Republic. Application of
guidecurves produced significant improvements over histo
operations, using the same information that would have
available to reservoir operators during the historical period.
eral other researchers have successfully applied SDP to
reservoir problems, such as Stedinger et al.~1984!; Huang et al
~1991!; and Vasiliadis and Karamouz~1994!. Unfortunately, ex
tensions of SDP to multireservoir systems are more aggravat
state dimensionality than in the deterministic case, particu
when spatial correlation of unregulated inflows must be m
tained. One of the few multireservoir applications of SDP
conducted by Tejada-Guibert et al.~1995! on the Trinity-Shast
Reservoir system of California.

The sampling stochastic dynamic programming approac
Kelman et al.~1990! employs a scenario-based method simila
stochastic linear programming, but using DP as the solution
rithm. This method overcomes the complexities of represe
multireservoir operations as a Markov decision process an
counting for all spatial and temporal dependencies in the sto
tic process. Unfortunately, the method fails to alleviate the dim
sionality problems associated with SDP, and is yet to be ap
to multistate, multireservoir systems. As with all scenario-b
approaches, questions arise as to the extremely small joint
abilities of occurrence of specific scenarios, particularly ove
tended time horizons.

The methods of IDP, DPSA, and DDP have been useful
niques for solving multireservoir DP problems in the determ
tic case. Attempts to extend these methods to stochastic pro
have not in general been successful, mainly since these me
are highly dependent on knowledge of the system state vecst

with certainty. Sherkat et al.~1985! attempted to extend DPSA
the stochastic case by successive adjustment of stationary r
policies one reservoir at a time. Unfortunately, the release po
generated for a particular reservoir are dependent only on st
and inflows to that reservoir, thereby ignoring important sp
dependencies in the reservoir system. Ponnambalam and A
~1996! attempt to overcome this disadvantage by using tw
three state variables at each iteration, with one of the state
ables representing the aggregate storage potential of rese
not yet considered. This allows optimal stationary release po
to include spatial correlations to at least some extent. A some
similar approach is proposed by Archibald et al.~1997! whereby a
sequence of three-dimensional SDP problems are solved,
states representing the current reservoir, aggregate states
stream reservoirs, and an approximation of the downstream
ervoirs. Braga et al.~1991! applied an approach similar to that
Sherkat et al.~1985! to the multireservoir system of the Comp
hia Energetica de Sao Paulo, Brazil, but attempted to accou
spatial correlation of inflows. Unfortunately, this method is in
pable of generating general operating rules since it determ
specific reservoir release decisions assuming current storag
els and previous month inflows are known. In addition, only t
sition probabilities for the current month are considered in
formulation, with optimal benefits of future operations calcula
deterministically.

Trezos and Yeh~1989! derived an extension of DDP for s

chastic multireservoir problems, but Ouarda~1991! observed that
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the method converged to suboptimal solutions. Ouarda~1991!
found the primary deficiency of the method to be the lack
calculation of optimal feedback decision rules. El-Awar e
~1998! modified the algorithm of Trezos and Yeh~1989! to in-
clude calculation of optimal multilag feedback policies of
form:

r t* ~st ,qt21 ,qt22!5Ātst1B̄tqt211C̄tqt221d̄t (27)

Instead of directly calculating optimal releaser t* , coefficients in
the matricesĀt , B̄t , C̄t , and vectord̄t are optimized. This struc
ture allows incorporation of multilag hydrologic information in
the reservoir system operating policies, with full inclusion of s
tial dependencies. Although a nominal optimal state trajectost*
is calculated, optimal policies retaining variability of the sys
state are calculated as quadratic expansions around these n
state trajectories. El-Awar et al.~1998! show that Eq.~27! is eas
ily modified to include nonlinear operating rule structures.

Hall ~1970! originally proposed a method of surmounting
dimensionality problem of DP for multireservoir systems by
gregating all reservoirs into anequivalent reservoir. Optimal poli-
cies for the aggregated reservoir are then decomposed into
vidual policies for each reservoir as constrained by the aggr
solution. Turgeon~1980! extended this concept to large-scale
dropower systems using SDP. Instead of using reservoir st
as the state variable, a potential energy term is created for tre
nonlinearities in the power calculations. Valdes et al.~1992! ap-
plied this technique to the four-reservoir lower Caroni hyd
power system in Venezuela. Disaggregation was performe
only spatially, but temporally, resulting in daily operational p
cies from the monthly equivalent reservoir policies.

The state aggregation approach reached an advanced sta
Saad et al.~1996! by incorporating neural networks as a mean
improving the disaggregation process to account for nonl
dependencies between the system elements. The metho
successfully applied to finding long-term operational poli
for Hydro-Quebec’s five-reservoir hydropower system on
La Grande River. The difficulty with state aggregati
decomposition methods is the loss of information that occurs
ing the aggregation process.

Stochastic Optimal Control Models

Stochastic optimal control theory extends OCT to a solutio
problems in the presence of uncertainty ornoise. The so-called
discrete-time linear quadratic Gaussian control~LQG! problem is
one where Eq.~1! is quadratic, the system dynamics equat
@Eq. ~3!# are linear with the inflows represented as indepen
Gaussian error terms, and all other constraints@i.e., Eqs.~4!–~6!#
are relaxed. Under these conditions, optimal linear feedbac
cision rules of the form

r t* ~st!5K tst1ct (28)

can be derived from the matrix Riccati equations~Bryson and Ho
1975! or continuous dynamic programming~Dreyfus and Law
1977!. Determination ofK t , ct is accomplished by efficient r
cursive calculations that begin with the final period and pro
backwards in time. Thecertainty equivalence principle~Bryson
and Ho 1975! states that although the feedback control law of
~28! is derived by replacing the Gaussian error terms~i.e., hydro-
logic inflows! with their means, it remains optimal even in
presence of random errors. More realistic formulations m

streamflows as AR(n) or ARIMA processes.
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The most serious weaknesses of the LQG model when ap
to multireservoir systems are the restriction to quadratic obje
functions and relaxation of the control and state-space const
@i.e., Eqs.~4!–~6!. Ouarda and Labadie~2001! proposed an opt
mal control formulation using the aforementioned OCT algor
subject to chance constraints similar to Eqs.~21! and ~22! with
assigned risk parametersa, b. This deterministic equivalent fo
mulation results in optimal open loop release and storage t
tories r t* , st11* (t51,...,T) that are not directly useful for impl
mentation in the stochastic case. However, they may be val
for developing quadratic approximations of the nonquadratic
jective function expanded around these trajectories, and fo
earizing any nonlinear terms in Eq.~3!. Optimal linear feedbac
decision rules@Eq. ~28!# can now be developed for this appro
mate problem. Although certainly suboptimal, these policies
be useful for stochastic control of complex, large-scale rese
system optimization problems that would defy solution by o
methods. Shim et al.~1994! report on successful application
this approach to the five-reservoir system in the Han River B
South Korea.

Multiobjective Optimization Models

The primary objective function of Eq.~1! can be concisely repr
sented asf (s,r ) where the vectorss, r represent reservoir stora
and releases for each site over all time periods. The proble
Eqs.~1!–~6! is now

maximize
s,r

f ~s,r ! (29)

subject to Eqs.~3!–~5!, and

f̄ j~s,r !>« j for j 51,...,m (30)

where the latter constraints can be regarded as additional
tives that are treated parametrically. Theepsilon-constrain
methodadjusts the« j targets to develop nondominated soluti
defining a Pareto optimal surface of tradeoffs between the o
tives ~Goicoechea et al. 1982!. These optimal solutions for ea
parametric set of« j values may be obtained using any of
aforementioned optimization algorithms deemed most appro
for the particular system in either an ISO or ESO structure.
and Becker~1982! applied the epsilon constraint method to m
tiobjective analysis of the Central Valley Project in Californ
considering tradeoffs between hydropower generation and
supply objectives.

Alternatively, the weighting methodcommensurates all
these objectives into a scalar value by assigning subje
weights~or relative magnitudes of importance! to each objectiv

maximize
s,r

f ~s,r !1(
j 51

m

wj f̄ j~s,r ! (31)

varying the relative weightswj also produces a nondomina
solution set for evaluation of tradeoffs. Ko et al.~1992! compared
these two methods for multiobjective evaluation of the Han R
Reservoir system in Korea. The four objectives evaluated w
~1! maximizing total energy production;~2! maximizing firm en
ergy; ~3! maximizing minimum downstream discharges for w
supply and water quality maintenance purposes; and~4! maximiz-
ing the reliability of satisfying downstream water supply requ
ments. The latter objective was evaluated using chance
straints as an ESO problem. It was concluded that the ep

constraint method is more efficient since the weighting method

© ASCE / MARCH/APRIL 2004



hts.
may

shed

l.
yed
to
ing

rily
nu-

ive is
This

ns is
ll re-
is. In
f the
tive
ly for

so-
e fur-
lysis

e

been
licit
d to
ekly,
ntrol
er
.
ro-
g of
s
ntrol

de
of er-

G
es-
stem
tion-
ea-

-time
nfall-
ed-
cur-
. A
nd th
tep.

e de-
must

oa-

n
ts in-
to
and

n of
imiza-
rob-
ases.
re

ed to
idis
e
singly
odel.
amic
s on
SDP

G
on

nnah
ined,

bjec-

ies of
imilar
s. A
the

the
essive
tion.
state
tes on
G is
l of
e and

ters
ding

orat-
ser-
nver
nt

eal-
lgo-
ary

ion is
diffi-
bian
qua-
time
n the

are
infall-
idis

es
may develop nonunique solutions for differing sets of weig
For large numbers of objectives, however, the latter method
be preferable.

Selecting the most preferred solution may be accompli
using goal programming~Loganathan and Bhattacharya 1990! or
compromise programming~Zeleny 1982!. Eschenbach et a
~2001! report that preemptive goal programming is emplo
within the RiverWare decision support system and applied
TVA’s power and reservoir system. Preemptive goal programm
involves setting goals for a primary objective and tempora
ignoring all other objectives. If this results in numerous no
nique solutions, then goal attainment for a secondary object
optimized over this set of nonunique solutions, and so on.
method only works well if massive nonuniqueness of solutio
attained at each level. Otherwise, secondary objectives wi
ceive inadequate consideration in the multiobjective analys
all of these cases, application of ISO is difficult because o
heavy computational load required for obtaining multiobjec
solutions. These methods are usually applied deterministical
operational planning purposes. If a finite number of discrete
lutions are selected from the Pareto optimal set, they can b
ther ranked using the methods of multicriteria decision ana
~MCDA! such asELECTRE~Goicoechea et al. 1982!, the analyti-
cal hierarchy process~AHP! ~Saaty 1980!, discrete compromis
programming~Goicoechea et al. 1982!, or PROMOTHEE~Brans
et al. 1986!.

Real-Time Control with Forecasting

Several of the aforementioned optimization models have
adapted for use in real-time control of reservoir systems. Imp
and explicit stochastic optimization methods can be applie
determining long-range guidecurves and policies over we
monthly, or seasonal time increments. Real-time optimal co
models are then designed totrack these long-term guidelines ov
shorter time horizons in hourly~or less! or daily time increments
For this case, flow routing and scheduling of individual hyd
power units is often important, as well as real-time forecastin
inflows and demands~i.e., both water and power!. Several author
have examined the importance of forecasting in real-time co
of reservoir systems, such as Labadie et al.~1981!; Mishalani and
Palmer~1988!; and Georgakakos~1989b!. These studies conclu
that use of forecasting is preferable, even in the presence
rors, toreactivecontrol that ignores forecasts.

Wasimi and Kitanidis~1983! applied the discrete-time LQ
model for optimal daily flood control operations in the multir
ervoir system of the Des Moines River basin, Iowa. The sy
state-space is expanded to include basin rainfall-runoff rela
ships and Muskingum-type streamflow routing. In this way, m
sured rainfall is the input to the model, and the forecast lead
is based on natural time lagging and attenuation from the rai
runoff and routing processes. Although a fully dynamic clos
loop solution is attained over all future time steps, only the
rent time step open-loop solution is actually implemented
Kalman filter updates estimates of observed system states, a
LQG algorithm is again solved beginning with the next time s
Bertsekas~1987! has termed this as anopen-loop feedbackpro-
cess. The quadratic objective function is designed to penaliz
viations from given ideal system states and releases, which
be determined from long-term operational planning studies.

The combined control-estimation model developed by L

iciga and Marino~1985! uses a state-space formulation similar to

JOURNAL OF WATER RESOURCES P
e

Wasimi and Kitanidis~1983!, but with inflows modeled as a
AR~1! process and uncertainties in system measuremen
cluded. McLaughlin and Velasco~1990! extend this approach
complex hydropower systems in monthly time increments
apply it to the two-reservoir system in the Caroni River Basi
Venezuela. These models are essentially unconstrained opt
tion procedures and are not applicable to real-time control p
lems with binding constraints on reservoir storages and rele
McLaughlin and Velasco~1990! propose a heuristic procedu
whereby the unconstrained optimal solution is simply truncat
feasible values prior to implementation. Philbrick and Kitan
~1999! point out that the accuracy of thesecertainty equivalenc
based methods degrades for reservoir systems that increa
deviate from the assumptions associated with the LQG m
Although they demonstrate the superiority of stochastic dyn
programming~SDP! in these cases, they offer no suggestion
how to overcome the severe computational requirements of
when applied to multireservoir systems.

Georgakakos and Marks~1987! proposed an extended LQ
~ELQG! algorithm allowing inclusion of binding constraints
system state and release variables. Georgakakos~1989a! applied
ELQG to the three-reservoir hydropower system on the Sava
River, Georgia. Constraints on releases are explicitly mainta
with chance constraints similar to Eqs.~24! and~25! employed on
system storage levels. The latter are incorporated into the o
tive function using penalty terms~or barrier functions! similar to
the OCT algorithm. Instead of unconstrained solutions, a ser
constrained quadratic approximate solutions are obtained s
to a feasible SQP algorithm with simple bound constraint
reduced approximate quadratic problem is projected onto
space of the decision variables~i.e., reservoir releases! similar to
the GRG method, which removes direct consideration of
state-space constraints. The latter are accounted for by succ
solutions with increasing penalty terms in the objective func
A key element of ELQG is the expansion of the system
representation to include both mean and covariance estima
reservoir storage. Although a highly complex algorithm, ELQ
clearly superior to the previous methods for real-time contro
reservoir systems where binding constraints exist on the stat
decision variables. Georgakakos et al.~1997! further applied
ELQG to hydropower scheduling in the Lanier-Allatoona-Car
system in Georgia, and included optimal scheduling and loa
of turbine units.

Several studies have focused on the importance of incorp
ing realistic flow routing techniques in real-time control of re
voir systems, especially during flood control operations. U
and Mays~1990! explicitly incorporate the linearized St. Vena
equations for fully dynamic, unsteady flow routing into a r
time optimal control model for reservoir systems. The GRG a
rithm is applied directly to reservoir gate controls as the prim
decision variable, although an augmented Lagrangian funct
used to deal with the state-space constraints. The primary
culty of this algorithm is the need to calculate complex Jaco
matrices defined from partial derivatives of the St. Venant e
tions. The optimal control model is incorporated into a real-
flood management system for the Highland Lakes system i
Lower Colorado River Basin of Texas. Forecasted inflows
based on rainfall measurements input into a watershed ra
runoff model, similar to the approach of Wasimi and Kitan
~1983!.

Labadie~1993b! avoids difficulties in calculating derivativ
for the St. Venant equations by using sets ofrouting coefficientsin

the state equations@i.e., Eq. ~3!# that are iteratively updated
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through successive solution of the OCT algorithm with a f
dynamic unsteady flow routing model. Excellent converge
characteristics are observed when the combined algorithm
plied to real-time control of in-system detention storage of sto
water runoff for a portion of the Seattle combined sewer sys
Since decision time steps are in 10–15 min intervals, inflow
dictions from an urban rainfall-runoff model are further extra
lated using an ARMA-type forecasting model. An open-loop fe
back procedure is employed, although forecasted inflows
treated deterministically. Shim et al.~2002! applied the routin
coefficient method for optimal real-time flood control operati
in the Han River Basin, Korea. A geographic information sys
processes spatial rainfall data in real-time for input into an a
cial neural network~ANN! for inflow forecasting. The DPSA a
gorithm provides an efficient optimization procedure for gene
ing optimal operating policies for the multireservoir system wh
are updated hourly.

Hayes et al.~1998! expanded the state-space in reservoir
tem optimization to directly include dynamic routing of wa
quality constituents through impoundments and stream rea
Eq. ~3! is augmented to include state dynamic equations on
perature and dissolved oxygen. The OCT algorithm is applie
develop optimal daily reservoir release schedules that max
hydropower revenues, subject to constraints on water qu
maintenance. Application to daily scheduling in the Cumber
River basin reservoir system in Tennessee indicates that s
cant improvement in downstream water quality conditions ca
achieved with only modest losses in hydropower benefits.

Howard~1994! shows how optimization models can be inc
porated into decision support systems for real-time reservoir
trol through linkage with supervisory control and data acquis
systems~SCADA!, as well as real-time hydrologic and pow
load forecasting models. With monitoring and telemetry eq
ment now relatively inexpensive, a real-time decision support
tem can support all data management functions, provide rea
hydrologic and power load forecasts, generate effective dis
of current system status, and allow operators to both sim
impacts of proposed operational controls and actually exe
those controls from the interface.

Heuristic Programming Models

All of the foregoing optimization models are algorithmic pro
dures, meaning that well-structured, convergent solution
cesses are applied to quantitative information. In contrast, he
tic programming methods are based on rules-of-thu
experience, or various analogies applied to both quantitative
qualitative information. Unlike most of the optimization alg
rithms, heuristic programs cannot guarantee termination to
local optimal solutions. These methods strive for acceptab
satisfyingsolutions, but they are often capable of achieving gl
optimal solutions to problems where traditional algorithmic m
ods would fail to converge orget stuckin local optima.

Genetic algorithms~GA! are categorized under the gene
heading of evolutionary programming~EP! in that they perform
optimization through a process analogous to ‘‘the mechani
natural selection and natural genetics’’ in the biological scie
~Goldberg 1989!. Three heuristic processes of reproduct
crossover, and mutation are applied probabilistically to disc
decision variables that are coded into binary strings. Rather
generating progressions of single solutions, as with all of the

ceding optimization algorithms, a GA produces groups orpopu-
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lations of solutions whoseoffspring display increasing levels
fitness ~i.e., objective function values!. Michalewicz ~1996!
showed that GAs representing decision variables with flo
point or real number coding are more computationally effic
than binary coded GAs for problems requiring accurate real
ber calculations.

A disadvantage of GAs is the difficulty of explicitly accou
ing for constraints~particularly inequality constraints! and main
taining feasible solutions in the population. Constraints are
erally indirectly accounted for through the use of penalty te
incorporated into the fitness~or objective! function, although
Michalewicz ~1996! describes evolution strategies that allow
plicit consideration of constraints. Unfortunately, these met
are generally problem specific and must be modified for each
application. An example is an application of a GA by Ilich~2001!
to a reservoir system optimization problem where the ‘‘itera
scheme was built directly into the solver in order to ensure
each generated solution is feasible.’’ Although Ilich~2001! claims
this method to be a ‘‘replacement for standard LP solvers us
basin allocation models,’’ it means that each application req
recoding and fine tuning of the solver, which diminishes the v
of this procedure as a generalized optimization tool.

Otero et al.~1995! applied a GA to determining minimu
stormwater detention storage capacities and optimal ope
rules for managing freshwater runoff into the St. Lucie Est
along the southeast coast of Florida. Generalized, piecewise
reservoir operating rules are used, with the GA directly man
lating the breakpoint locations on the rule curves for each se
The GA is linked with a daily hydrologic simulation model op
ating over a 27 year historical period and performs frequ
analysis on mean monthly inflows resulting from the current
erating rules. These are compared with the ideal frequency d
butions using appropriate goodness-of-fit criteria. The obje
function also includes penalty terms that attempt to minimiz
quired storage capacities, as well as discourage violation of
ous operational constraints.

The significant advantage of the GA is that it can be dire
linked with hydrologic and water quality simulation models w
out requiring simplifying assumptions in the model or calcula
of derivatives. The GA adjustspopulationsof release rule stru
tures based on predictions of the impacts of the rules as pro
by the simulation model. Extensive frequency analyses ca
conducted during the system simulation, resulting in disc
probability distributions and various risk measures that ca
directly included in the objective function. Measures of sys
resilience~i.e., rate of recovery after occurrence of failure! and
vulnerability ~i.e., severity of consequences of failure! ~Hash-
imoto et al. 1982!, which are difficult to explicitly include in a
gorithmic procedures, are easily incorporated into a
simulation model linkage.

The key to successful application of the GA in the Otero e
~1995! study is the optimization of parameters representing o
ating rule structures, rather than actual period-of-record rel
over each time step. Oliveira and Loucks~1997! propose a simila
approach, which is applied to defining multiple reservoir ope
ing policies using system rule curves and individual storage t
balancing functions. Sharif and Wardlaw~2000! propose applica
tion of a GA to direct optimization of period-of-record release
an alternative to deterministic optimization approaches suc
DDDP. However, the advantage of a GA lies not in its comp
tional efficiency, but rather the robust ability to solve highly n
linear, nonconvex problems. The expensive computationa

quirements of a GA make it ill-suited for ISO or ESO applied to
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multireservoir systems unless operating policies can be pa
eterized in some way.

Cai et al. ~2001! describe an application of GAs to solvi
large-scale nonlinear water management problems over mu
periods, such as for ISO. The GA only optimizes over a lim
number of complicating orcoupling variables such that whe
fixed, allow decomposition of the original problem into ma
small linear programming problems. Bouchart and Hamp
zoumian~1999! applied a GA to identify appropriate inflow s
quences for training of a reinforcement learning~RL! model. Re
inforcement learning provides strategies for solving probl
similar to large-scale stochastic dynamic programming prob
without the need for explicit knowledge of the state transi
probability function~Kaelbling et al. 1996!.

Although not classified as an optimization technique pe
artificial neural networks~ANN! may be useful as an alternat
to multiple regression analysis for determining optimal rules f
ISO. An ANN is a ‘‘computational paradigm inspired by the p
allelism of the brain.’’ Artificial neurons or nodes are simple p
cessing units that produce outputs as nonlinear function
weighted sums of the inputs to that node. The ANN is particu
valuable in performing classification and pattern recognition f
tions for processes governed by complex nonlinear interrela
ships. Raman and Chandramouli~1996! used an ANN for infer
ring optimal release rules conditioned on initial storage, inflo
and demands. Results of a deterministic DP model for the A
reservoir in Tamil Nadu, India for 20 years of bimonthly d
serve as atraining setfor the ANN. The training of an ANN is a
optimization process, usually by a gradient-typeback-
propagation procedure, which determines the values of
weights on all interconnections that best explain the input-ou
relationship. Chandramouli and Raman~2001! extended this ap
proach to developing operating rules for multireservoir syste

Raman and Chandramouli~1996! claim that simulation o
rules obtained from the trained ANN outperforms rules produ
by linear regression analysis, as well as optimal feedback
obtained from explicit stochastic optimization using SDP. O
uses of ANN may be in representing the DP optimal retur
cost-to-go functionFt(st ,qt21) with fewer sampling points
thereby creating the potential for solving high dimensional
chastic dynamic programming problems for reservoir system
timization. This is the basis for neurodynamic programming
proposed by Bertsekas and Tsitsiklis~1996!.

An alternative approach to inferring operating rules from
torical operations or ISO of reservoir systems is through us
fuzzy rule-based~FRB! modeling. Fuzzy sets provide a nonf
quentist approach to dealing with uncertainty and vaguenes
are not bound by the laws of probability measure theory. F
sets provide a means of translating linguistic descriptors in
usable numerical form. Fuzzy sets define degrees of tru
membership in a set by means of fuzzy membership functio

Shrestha et al.~1996! propose that inputs to reservoir ope
ing policies~e.g., initial storage, inflows, and demands!, as well
as outputs~e.g., historical release policies or results from IS!
can be described by fuzzy relations.Degrees of fulfillmentof
these fuzzy inputs are combined to produce fuzzy output rela
which can bedefuzzifiedto produce acrisp output~e.g., reservoi
release decision!. Similar to an ANN, results of ISO of a reserv
system produce atraining setwhich the fuzzy rule-based syste
attempts to analyze using various methods such as the we
counting algorithm or least-squares methods for adjusting
fuzzy numbers. Shrestha et al.~1996! report excellent results

using an FRB system to replicate historical operations for Ten-

JOURNAL OF WATER RESOURCES P
killer Lake, Okl. It is likely that the FRB approach could
extended to multireservoir systems for inferring operating r
from training sets produced by ISO.

Fuzzy sets have also been integrated into optimization
rithms as a means of representing vagueness and uncerta
system characteristics and objectives. Fontane et al.~1997! used
linguistically described reservoir objectives from surveys of d
sion makers to develop fuzzy membership functions on div
objectives such as water supply, flood control, and recrea
These were incorporated into an implicit stochastic dynamic
gramming model for evaluating degrees of satisfaction and e
tations of success in achieving these objectives. Luhandjula
Gupta ~1996! proposed the integration of fuzzy sets into E
models as a means of appropriately treating uncertainty in
plex systems.

Conclusions

There are a few areas of application of optimization models
a richer or more diverse history than in reservoir system op
zation. Although opportunities for real-world applications
enormous, actual implementations remain limited or have
been sustained. Shepherd and Ortolano~1996! report on persona
communications with system operators stating that they ‘‘d
like being told what to do...’’ or a preference to make decis
‘‘in his own way.’’ Many examples of the lack of success
implementation of reservoir system optimization models occ
public works agencies with vague performance objectives. O
in these cases, the avoidance of difficulties or perceived sy
failure are the dominant goals, rather than improving efficienc
reducing costs. This is not necessarily true for many priva
quasi-public water and power systems where strong financia
revenue-based incentives exist for deployment of optimiz
methods. Opportunities for implementation of reservoir sys
optimization models may grow as the public demands gr
performance-based accountability in water management age
Reservoir system operators may increasingly rely on sophisti
computer modeling tools to better respond to new environm
and ecological constraints for which they have little experien
draw on.

This writer is convinced that the keys to success in implem
tation of reservoir system optimization models are:~1! improving
the levels of trust by more interactive involvement of deci
makers in system development;~2! better ‘‘packaging’’ of thes
systems, as suggested by Goulter~1992!; and ~3! improved link-
age with simulation models which operators more readily ac
For the latter, increased application of heuristic programm
methods is particularly important, which many system ana
have been slow to adopt because they lack a strong scient
theoretical foundation. The ability of genetic algorithms to
linked directly with trusted simulation models is a great ad
tage. In addition, past difficulties in inferring operating polic
from implicit stochastic optimization models may be allevia
through applications of fuzzy rule-based systems and neura
works. The computational challenges of explicit stochastic
mization may also be overcome through judicious applicatio
these heuristic techniques.

References

Ahmed, I., and Lansey, K.~2001!. ‘‘Optimal operation of multi-reservo

systems under uncertainty.’’Proc., World Water and Environmental

LANNING AND MANAGEMENT © ASCE / MARCH/APRIL 2004 / 107



Re-

ms.’’

-
prob-

case

ct
CE,

-

:

a

s,

g

as-

-

g

r-

-
op-
pli-
, Ltd.,

f
n-

,

re-

y of
fic
ces,

r
linear

.

,

ra-

-

se
n
E,

m-

l
-

e, R.
jec-
e.,

-
e.,

-

t
r.

ply

rol:

er-

e

-
e.,

g
e.,

a-

ign
m.

oir
,

ing

amic
of

p-
-

alua-
Resources Congress, D. Phelps, ed., Environmental and Water
sources Institute of ASCE, Reston, Va.

Archibald, T., McKinnon, K., and Thomas, L.~1997!. ‘‘An aggregate
stochastic dynamic programming model of multireservoir syste
Water Resour. Res.,33~2!, 333–340.

Ardekaaniaan, R., and Moin, S.~1995!. ‘‘A comparison of different op
timization techniques based on a real water resources allocation
lem.’’ Proc., Regional Conf. on Water Resources Management, Isfa-
han, Iran.

Arnold, E., Tatjewski, P., and Wolochowicz, P.~1994!. ‘‘Two methods for
large-scale nonlinear optimization and their comparison on a
study of hydropower optimization.’’J. Optim. Theory Appl.,81~2!,
221–248.

ASCE Task Committee on Sustainability Criteria.~1998!. ‘‘Sustainability
for water resource systems.’’ASCE and UNESCO/IHP IV Proje
M-4.3, Water Resources Planning and Management Division, AS
Reston, Va.

Barros, M., Tsai, F., Yang, S.-L., Lopes, J., and Yeh, W.~2003!. ‘‘Opti-
mization of large-scale hydropower system operations.’’J. Water Re
sour. Plan. Manage.,129~3!, 178–188.

Bazarra, M., Sherali, H., and Shetty, C.~1993!. Nonlinear programming
Theory and algorithms, Wiley, New York.

Becker, L., and Yeh, W.~1974!. ‘‘Optimization of real-time operation of
multiple reservoir system.’’Water Resour. Res.,10~6!, 1107–1112.

Bellman, R.~1957!. Dynamic programming, Princeton University Pres
Princeton, N.J.

Bellman, R.~1961!. Adaptive control processes: A guided tour, Princeton
University Press, Princeton, N.J.

Bellman, R., and Dreyfus, S.~1962!. Applied dynamic programmin,
Princeton University Press, Princeton, N.J.

Bertsekas, D.~1987!. Dynamic programming: Deterministic and stoch
tic models, Prentice-Hall, Englewood Cliffs, N.J.

Bertsekas, D., and Tseng, P.~1994!. ‘‘RELAX-IV: A faster version of the
RELAX code for solving minimum cost flow problems.’’Completion
Report under NSF Grant CCR-9103804, Department of Electrical En
gineering and Computer Science, MIT, Cambridge, Mass.

Bertsekas, D., and Tsitsiklis, J.~1996!. Neuro-dynamic programmin,
Athena Scientific, Belmont, Mass.

Biddle, S. ~2001!. ‘‘Optimizing the TVA reservoir system using Rive
Ware.’’ Proc., World Water and Environmental Congress, ASCE, Or-
lando, Fla.

Bouchart, F., and Hampartzoumian, E.~1999!. ‘‘Use of genetic algo
rithms within reinforcement learning model for multiple reservoir
eration.’’ Water industry systems: Modelling and optimization ap
cations, D. Savic and G. Walters, eds., Research Studies Press
Baldock, Hertfordshire, England.

Braga, B., Yeh, W., and Barros, M.~1991!. ‘‘Stochastic optimization o
multiple-reservoir-system operation.’’J. Water Resour. Plan. Ma
age.,117~4!, 471–481.

Brans, J., Vincke, P., and Mareschal, B.~1986!. ‘‘How to select and how
to rank: The PROMETHEE method.’’Eur. J. Oper. Res.,24~2!, 228–
238.

Bryson, A., and Ho, Y.-C.~1975!. Applied optimal control: Optimization
estimation, and control, Hemisphere, Washington.

Buras, N. ~1972!. Scientific allocation of water resources; water
sources development and utilization-a rational approach, American
Elsevier, New York.

Caballero, Y., Chevallier, P., Boone, A., and Noilhan, J.~2001!. ‘‘River
flow modeling for a tropical high-altitude mountain: A case stud
the Rio Zongo Valley in the Royal Cordillera, Bolivia.’’ 6th Scienti
Assembly of the International Association of Hydrological Scien
Maastricht, The Netherlands.

Cai, X., McKinney, D., and Lasdon, L.~2001!. ‘‘Solving nonlinear wate
management models using a combined genetic algorithm and
programming approach.’’Adv. Water Resour.,24~6!, 667–676.

Chandramouli, V., and Raman, H.~2001!. ‘‘Multireservoir modeling with
dynamic programming and neural networks.’’J. Water Resour. Plan

Manage.,127~2!, 89–98.

108 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT
Cohon, J.~1978!. Multiobjective programming and planning, Academic
New York.

Collins, M. ~1977!. ‘‘Implementation of an optimization model for ope
tion of a metropolitan reservoir system.’’Water Resour. Bull.,13~1!,
57–70.

Crawley, P., and Dandy, G.~1993!. ‘‘Optimal operation of multiple
reservoir system.’’J. Water Resour. Plan. Manage.,119~1!, 1–17.

Divi, R., and Ruiu, D.~1989!. ‘‘Optimal management of multi-purpo
reservoirs in a hydro-thermal power system.’’Computerized decisio
support systems for water managers, J. Labadie et al., eds., ASC
Reston, Va., 413–424.

Dreyfus, S., and Law, A.~1977!. The art and theory of dynamic progra
ming, Academic, New York.

El-Awar, F., Labadie, J., and Ouarda, T.~1998!. ‘‘Stochastic differentia
dynamic programming for multireservoir system control.’’J. Stochas
tic Hydrol. Hydraul.,12, 247–266.

Eschenbach, E., Magee, T., Zagona, E., Goronflo, M., and Shan
~2001!. ‘‘Goal programming decision support system for multiob
tive operation of reservoir systems.’’J. Water Resour. Plan. Manag
127~2!, 108–120.

Fontane, D., Gates, T., and Moncada, E.~1997!. ‘‘Planning reservoir op
erations with imprecise objectives.’’J. Water Resour. Plan. Manag
123~3!, 154–162.

Ford, L., and Fulkerson, D.~1962!. Flows in networks, Princeton Univer
sity Press, Princeton, N.J.

Fredericks, J., Labadie, J., and Altenhofen, J.~1998!. ‘‘Decision suppor
system for conjunctive stream-aquifer management.’’J. Water Resou
Plan. Manage.,124~2!, 69–78.

Gal, S.~1979!. ‘‘Optimal management of a multi-reservoir water sup
system.’’Water Resour. Res.,15~4!, 737–749.

Georgakakos, A.~1989a!. ‘‘Extended linear quadratic Gaussian cont
Further extensions.’’Water Resour. Res.,25~2!, 191–201.

Georgakakos, A.~1989b!. ‘‘The value of streamflow forecasting in res
voir operations.’’Water Resour. Bull.,25~4!, 789–800.

Georgakakos, A., and Marks, D.~1987!. ‘‘A new method for the real-tim
operation of reservoir systems.’’Water Resour. Res.,23~7!, 1376–
1390.

Georgakakos, A., Yao, H., and Yu, Y.~1997!. ‘‘Control model for hydro
electric energy-value optimization.’’J. Water Resour. Plan. Manag
123~1!, 30–38.

Giles, J., and Wunderlich, W.~1981!. ‘‘Weekly multipurpose plannin
model for TVA reservoir system.’’J. Water Resour. Plan. Manag
107~2!, 495–511.

Goicoechea, A., Hansen, D., and Duckstein, L.~1982!. Multiobjective
decision analysis with engineering and business applications, Wiley,
New York.

Goldberg, D.~1989!. Genetic algorithms in search optimization and m
chine learning, Addison-Wesley, Reading, Mass.

Goulter, I.~1992!. ‘‘System analysis in water-distribution network des
from theory to practice.’’J. Water Resour. Plan. Manage. Div., A
Soc. Civ. Eng.,118~3!, 238–248.

Grygier, J., and Stedinger, J.~1985!. ‘‘Algorithms for optimizing hydro-
power system operation.’’Water Resour. Res.,21~1!, 1–10.

Hall, W. ~1970!. ‘‘Optimal state dynamic programming for multireserv
hydroelectric systems.’’Technical Rep., Dept. of Civil Engineering
Colorado State Univ., Ft. Collins, Colo.

Hall, W., and Dracup, J.~1970!. Water resources systems engineer,
McGraw-Hill, New York.

Hall, W., Harboe, R., Yeh, W., and Askew, A.~1969!. ‘‘Optimum firm
power output from a two reservoir system by incremental dyn
programming.’’Contribution # 130, Water Research Center, Univ.
California, Los Angeles.

Halliburton, T., and Sirisena, H.~1984!. ‘‘Development of stochastic o
timization for multi-reservoir scheduling.’’IEEE Trans. Autom. Con
trol, 29~1!, 82–84.

Hashimoto, T., Stedinger, J., and Loucks, D.~1982!. ‘‘Reliability, resil-
iency, and vulnerability criteria for water resources system ev
tion.’’ Water Resour. Res.,18~1!, 14–20.
Hayes, D., Labadie, J., Sanders, T., and Brown, J.~1998!. ‘‘Enhancing

© ASCE / MARCH/APRIL 2004



.,

sys-

oir
ing,

is
p-
e-

-

effi-
r.

nd
nf.

l
n-

-
asted

s,

ion
flow
ress

n

us, K.,
y-
r
The

ert, J.
ms

s
r

-

.

op-

-

e.,

er
re-
.,

e
.,
ub-

-
ces

ge:
-

g
d.’’

er
ns,

,

-

a-
on to

-
n-

-
and

s

-

-
e.,

and

an-

.

er

-
r.
water quality in hydropower system operations.’’Water Resour. Res
34~2!, 471–483.

Hiedari, M., Chow, V., Kotovic, P., and Meredith, D.~1971!. ‘‘Discrete
differential dynamic programming approach to water resources
tem optimization.’’Water Resour. Res.,7~2!, 2733–282.

Hiew, K. ~1987!. ‘‘Optimization algorithms for large scale multi-reserv
hydropower systems.’’ PhD dissertation, Dept. of Civil Engineer
Colorado State Univ., Ft. Collins, Colo.

Hiew, K., Labadie, J., and Scott, J.~1989!. ‘‘Optimal operational analys
of the Colorado-Big Thompson project.’’Computerized decision su
port systems for water managers, J. Labadie et al., eds., ASCE, R
ston, Va., 632–646.

Higgins, J., and Brock, W.~1999!. ‘‘Overview of reservoir release im
provements at 20 TVA dams.’’J. Energy Eng.,125~1!, 1–17.

Houck, M., Colon, J., and ReVelle, C.~1980!. ‘‘Linear decision rules in
reservoir management and design 6: Incorporation of economic
ciency benefits and hydro-electric energy generation.’’Water Resou
Res.,16~1!, 196–200.

Howard, R.~1960!. Dynamic programming and Markov processes, Mas-
sachusetts Institute of Technology Press, Cambridge, Mass.

Howard, C. ~1994!. ‘‘Optimal integrated scheduling of reservoirs a
generating units.’’Leading Edge Technology: Hydro-Vision Co,
Phoenix, Ariz.

Hsu, N.-S., and Cheng, K.-W.~2002!. ‘‘Network flow optimization mode
for basin-scale water supply planning.’’J. Water Resour. Plan. Ma
age.,128~2!, 102–112.

Huang, W., Harboe, R., and Bogardi, J.~1991!. ‘‘Testing stochastic dy
namic programming models conditioned on observed or forec
inflows.’’ J. Water Resour. Plan. Manage.,117~1!, 28–36.

Hydrologic Engineering Center.~1989!. ‘‘HEC-5: Simulation of flood
control and conservation systems.’’U.S. Army Corps of Engineer
Documentation and User’s Manual, Davis, Calif.

Ilich, N. ~2001!. ‘‘The benefits of replacing LP solvers in basin allocat
models with a generalized nonlinear evolutionary network
solver.’’ Proc., World Water and Environmental Resources Cong,
D. Phelps and G. Shelke, eds., ASCE, Reston, Va.

Israel, M., and Lund, J.~1999!. ‘‘Priority preserving unit penalties i
network flow modeling.’’J. Water Resour. Plan. Manage.,125~4!,
205–214.

Jacobs, J., Freeman, G., Grygier, J., Morton, D., Schultz, G., Stasch
and Stedinger, J.~1995!. ‘‘SOCRATES: A system for scheduling h
droelectric generation under uncertainty.’’Models for planning unde
uncertainty, Vladimirou et al., eds., Baltzer Science, Bussum,
Netherlands.

Jacobson, H., and Mayne, Q.~1970!. Differential dynamic programming,
Elsevier, New York.

Johnson, S., Stedinger, J., Shoemaker, C., Li, Y., and Tejada-Guib
~1993!. ‘‘Numerical solution of continuous-state dynamic progra
using linear and spline interpolation.’’Oper. Res.,41~3!, 484–500.

Jones, L., Willis, R., and Finney, B.~1986!. ‘‘Water resources system
planning: Differential dynamic programming models.’’Proc., Wate
Forum ’86, ASCE, Reston, Va., 1033–1040.

Kaelbling, L., Littman, M., and Moore, A.~1996!. ‘‘Reinforcement learn
ing: A survey.’’ J. Artif. Intell. Res.,4, 237–285.

Kall, P., and Wallace, S.~1995!. Stochastic programming, Wiley, New
York.

Karamouz, M., Houck, M., and Delleur, J.~1992!. ‘‘Optimization and
simulation of multiple reservoir systems.’’J. Water Resour. Plan
Manage.,118~1!, 71–81.

Kelman, J., Stedinger, J., Cooper, L., Hsu, E., and Yuan, S.-Q.~1990!.
‘‘Sampling stochastic dynamic programming applied to reservoir
eration.’’ Water Resour. Res.,26~3!, 447–454.

Klipsch, J.~2002!. ‘‘HEC-RESSIM: Capabilities and plans.’’Second Fed
eral Interagency Modeling Conf., Las Vegas.

Ko, S.-K., Fontane, D., and Labadie, J.~1992!. ‘‘Multiobjective optimi-
zation of reservoir systems operations.’’Water Resour. Bull.,28~1!,
111–127.
Kuczera, G. ~1993!. ‘‘Network linear programming codes for water-

JOURNAL OF WATER RESOURCES P
supply headworks modeling.’’J. Water Resour. Plan. Manag
119~3!, 412–417.

Labadie, J.~1993a!. ‘‘Combining simulation and optimization in riv
basin management.’’Stochastic hydrology and its uses in water
sources systems simulation and optimization, J. Marco et al., eds
Kluwer Academic, Dordrecht, The Netherlands, 345–371.

Labadie, J.~1993b!. ‘‘Optimal use of in-system storage for real-tim
urban stormwater control.’’Urban Stormwater Drainage: Proc
U.S.–Italy Bilateral Seminar, Cao et al., eds., Water Resources P
lications, Highlands Ranch, Calif.

Labadie, J.~1997!. ‘‘Reservoir system optimization models.’’Water Re
sources Update, The Universities Council on Water Resour
~UCOWR!, Issue 108, Southern Illinois Univ., Carbondale, Ill.

Labadie, J. ~1999!. ‘‘Generalized dynamic programming packa
CSUDP.’’ Documentation and user manual, Dept. of Civil Engineer
ing, Colorado State Univ., Ft. Collins, Colo.

Labadie, J., and Baldo, M.~2001!. ‘‘Discussion of ‘Priority preservin
unit penalties in network flow modeling.’ by M. Israel and J. Lun
J. Water Resour. Plan. Manage.,127~1!, 67–68.

Labadie, J., Baldo, M., and Larson, R.~2000!. ‘‘MODSIM: Decision
support system for river basin management.’’Documentation and us
manual, Dept. of Civil Engineering, Colorado State Univ., Ft. Colli
Colo.

Labadie, J., Brazil, L., Corbu, I., and Johnson, L., eds.~1989!. Comput-
erized decision support systems for water managers, ASCE, Reston
Va.

Labadie, J., Lazaro, R., and Morrow, D.~1981!. ‘‘Worth of short-term
rainfall forecasting for combined sewer overflow control.’’Water Re
sour. Res.,17~6!, 1594–1604.

Larson, R.~1968!. State increment dynamic programming, Elsevier, New
York.

Larson, R., Labadie, J., and Baldo, M.~1998!. ‘‘MODSIM Decision sup-
port system for river basin water rights administration.’’Proc., First
Federal Interagency Hydrologic Modeling Conf., Las Vegas.

Loaiciga, H., and Marino, M.~1985!. ‘‘An approach to parameter estim
tion and stochastic control in water resources with an applicati
reservoir operation.’’Water Resour. Res.,21~11!, 1575–1584.

Loganathan, G., and Bhattacharya, D.~1990!. ‘‘Goal-programming tech
niques for optimal reservoir operations.’’J. Water Resour. Plan. Ma
age.,116~6!, 820–838.

Loucks, D. P.~2000!. ‘‘Sustainable water resources management.’’Water
Int., 25~1!, 3–10.

Loucks, D., and Dorfman, P.~1975!. ‘‘An evaluation of some linear de
cision rules in chance-constrained models for reservoir planning
operation.’’Water Resour. Res.,11~6!, 777–782.

Loucks, D., Stedinger, J., and Haith, D.~1981!. Water resource system
planning and analysis, Prentice-Hall, Englewood Cliffs, N.J.

Luhandjula, M., and Gupta, M.~1996!. ‘‘On fuzzy stochastic optimiza
tion.’’ Fuzzy Sets Syst.,81, 47–55.

Lund, J., and Ferreira, I.~1996!. ‘‘Operating rule optimization for Mis
souri River reservoir system.’’J. Water Resour. Plan. Manag
122~4!, 287–295.

Maass, A., Hufschmidt, M., Dorfman, R., Thomas, H., Marglin, S.,
Fair, G.~1962!. Design of water resource systems, Harvard University
Press, Cambridge, Mass.

Martin, Q. ~1983!. ‘‘Optimal operation of multiple reservoir systems.’’J.
Water Resour. Plan. Manage.,109~1!, 58–74.

Mays, L., and Tung, Y.-K.~1992!. Hydrosystems engineering and m
agement, McGraw-Hill, New York.

McLaughlin, D., and Velasco, H.~1990!. ‘‘Real-time control of a system
of large hydropower reservoirs.’’Water Resour. Res.,26~4!, 623–635

Michalewicz, Z.~1996!. Genetic algorithms1data structures5evolution
programs, Springer, Berlin.

Mishalani, N., and Palmer, N.~1988!. ‘‘Forecast uncertainty in wat
supply reservoir operation.’’Water Resour. Bull.,24~6!, 1237–1245.

Mizyed, N., Loftis, J., and Fontane, D.~1992!. ‘‘Operation of large mul
tireservoir systems using optimal-control theory.’’J. Water Resou
Plan. Manage.,118~4!, 371–387.
Munevar, A., and Chung, F.~1999!. ‘‘Modeling California’s water re-

LANNING AND MANAGEMENT © ASCE / MARCH/APRIL 2004 / 109



es
z.
ic

ord

ord

g

’’

ir

d
.
SCE,

ro-
olo-

ol

in
ces

n-
-

o

-
.

f
from

, E.
,

g
.

ew

hastic

’’

sys-

ity

-
e.,

c

-
.,

s:
e.,

s.’’

-
r.

oir

d
e.,

-

-
e.,

ry
.
-
-

d

-
-

ls of

r.

m-

-

d G.

y-

nd
n
E,

ms

o-
l

ion.’’
source systems with CALSIM.’’Proc., 26th Annual Water Resourc
Planning and Management Conf., E. Wilson, ed., ASCE, Tempe, Ari

Murray, D., and Yakowitz, S.~1979!. ‘‘Constrained differential dynam
programming and its application to multi-reservoir control.’’Water
Resour. Res.,15~5!, 1017–1027.

Murtagh, B., and Saunders, M.~1987!. ‘‘MINOS 5.1 user’s guide.’’Tech-
nical Rep. No. 50 L 83-20R, Dept. of Operations Research, Stanf
Univ., Stanford, Calif.

Murtagh, B., and Saunders, M.~1995!. ‘‘MINOS 5.4 user’s guide.’’Tech-
nical Rep. No. 50 L 83-20R, Dept. of Operations Research, Stanf
Univ., Stanford, Calif.

Nash, S., and Sofer, A.~1996!. Linear and nonlinear programmin,
McGraw-Hill, New York.

Needham, J., Watkins, D., Lund, J., and Nanda, K.~2000!. ‘‘Linear pro-
gramming for flood control in the Iowa and Des Moines rivers.J.
Water Resour. Plan. Manage.,126~3!, 118–127.

Nopmongcol, P., and Askew, A.~1976!. ‘‘Multi-level incremental dy-
namic programming.’’Water Resour. Res.,12~6!, 1291–1297.

Oliveira, R., and Loucks, D.~1997!. ‘‘Operating rules for multireservo
systems.’’Water Resour. Res.,33~4!, 839–852.

Otero, J., Labadie, J., and Haunert, D.~1995!. ‘‘Optimization of manage
runoff to the St. Lucie estuary.’’Proc., First Int. Conf., W. Espey Jr
and P. Combs, eds., Water Resources Engineering Division, A
San Antonio.

Ouarda, T.~1991!. ‘‘Stochastic optimal operation of large scale hyd
power systems.’’ PhD dissertation, Dept. of Civil Engineering, C
rado State Univ., Ft. Collins, Colo.

Ouarda, T., and Labadie, J.~2001!. ‘‘Chance-constrained optimal contr
for multireservoir system optimization and risk analysis.’’Stochastic
Environ. Res. Risk Assessment,15~3!, 185–204.

Palmer, R.~2000!. ‘‘Task committee report on shared vision modeling
water resources planning.’’Proc., 26th Annual ASCE Water Resour
Planning and Management Conf., Minneapolis.

Papageorgiou, M.~1988!. ‘‘Certainty equivalent open-loop feedback co
trol applied to multi-reservoir networks.’’IEEE Trans. Autom. Con
trol, 33~4!, 392–399.

Peng, C.-S., and Buras, N.~2000!. ‘‘Practical estimation of inflows int
multireservoir system.’’J. Water Resour. Plan. Manage.,126~5!, 331–
334.

Philbrick, C., and Kitanidis, P.~1999!. ‘‘Limitations of deterministic op
timization applied to reservoir operations.’’J. Water Resour. Plan
Manage.,125~3!, 135–142.

Ponnambalam, K., and Adams, B.~1996!. ‘‘Stochastic optimization o
multireservoir systems using a heuristic algorithm: Case study
India.’’ Water Resour. Res.,32~3!, 733–741.

Pontryagin, L., Boltyanskii, V., Gamdrelidze, R., and Mishchenko
~1962!. The mathematical theory of optimal processes, Interscience
New York.

Raman, H., and Chandramouli, V.~1996!. ‘‘Deriving a general operatin
policy for reservoirs using neural network.’’J. Water Resour. Plan
Manage.,122~5!, 342–347.

ReVelle, C. ~1999!. Optimizing reservoir resources: Including a n
model for reservoir reliability, Wiley, New York.

ReVelle, C., Joeres, E., and Kirby, W.~1969!. ‘‘Linear decision rules in
reservoir management and design 1: Development of the stoc
model.’’ Water Resour. Res.,5~4!, 767–777.

Roefs, T., and Bodin, T.~1970!. ‘‘Multireservoir operation studies.
Water Resour. Res.,6~2!, 410–420.

Saad, M., Bigras, P., Turgeon, A., and Duquette, R.~1996!. ‘‘Fuzzy learn-
ing decomposition for the scheduling of hydroelectric power
tems.’’ Water Resour. Res.,32~1!, 179–186.

Saaty, T.~1980!. The analytical hierarchy process: Planning, prior
setting, resource allocation, McGraw-Hill, New York.

Seifi, A., and Hipel, K.~2001!. ‘‘Interior-point method for reservoir op
eration with stochastic inflows.’’J. Water Resour. Plan. Manag
127~1!, 48–57.

Sen, S., and Yakowitz, S.~1987!. ‘‘A quasi-Newton differential dynami
programming algorithm for discrete-time optimal control.’’Auto-

matica,23~6!, 749–752.

110 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT
Sharif, M., and Wardlaw, R.~2000!. ‘‘Multireservoir systems optimiza
tion using genetic algorithms: Case study.’’J. Comput. Civ. Eng
14~4!, 255–263.

Shepherd, A., and Ortolano, L.~1996!. ‘‘Water-supply system operation
Critiquing expert-system approach.’’J. Water Resour. Plan. Manag
122~5!, 348–355.

Sherkat, V., Campo, R., Moslehi, K., and Lo, E.~1985!. ‘‘Stochastic
long-term hydro-thermal optimization for multireservoir system
IEEE Trans. Power Appar. Syst.,PAS-104~8!, 2040–2050.

Shim, K.-C., Fontane, D., and Labadie, J.~2002!. ‘‘Spatial decision sup
port system for integrated river basin flood control.’’J. Water Resou
Plan. Manage.,128~3!, 190–201.

Shim, S.-B., Koh, D.-K., Shim, K.-D., Labadie, J., and Lee, H.-S.~1994!.
‘‘Development of optimal joint operation policies for a multi-reserv
system in the Han River Basin, Korea.’’Hydroinformatics ’94, Ver-
wey et al., eds., Balkema, Rotterdam, The Netherlands.

Shrestha, B., Duckstein, L., and Stakhiv, E.~1996!. ‘‘Fuzzy rule-base
modeling of reservoir operation.’’J. Water Resour. Plan. Manag
122~4!, 262–269.

Simonovic, S., and Marino, M.~1982!. ‘‘Reliability programming in res
ervoir management 3: Systems of multi-purpose reservoirs.’’Water
Resour. Res.,18~4!, 735–743.

Sinha, A., and Bischof, C.~1998!. ‘‘Application of automatic differentia
tion to reservoir design models.’’J. Water Resour. Plan. Manag
124~3!, 162–167.

Stedinger, J.~1984!. ‘‘The performance of LDR models for prelimina
design and reservoir operation.’’Water Resour. Res.,20~2!, 215–224

Stedinger, J., Sule, B., and Loucks, D.~1984!. ‘‘Stochastic dynamic pro
gramming models for reservoir operation optimization.’’Water Re
sour. Res.,20~11!, 1499–1505.

Stein, S., Miller, C., Stout, S., and Webb, J.~2001!. ‘‘Big Sandy River
basin STELLA reservoir regulation model.’’Proc., World Water an
Environmental Congress, ASCE, Orlando, Fla.

Sun, Y.-H., Yeh, W., Hsu, N.-S., and Louie, P.~1995!. ‘‘Generalized net
work algorithm for water-supply-system optimization.’’J. Water Re
sour. Plan. Manage.,121~5!, 392–398.

Tauxe, G., Inman, R., and Mades, D.~1980!. ‘‘Multiple objectives in
reservoir operation.’’J. Water Resour. Plan. Manage.,106~1!, 225–
238.

Tejada-Guibert, J., Johnson, S., and Stedinger, J.~1995!. ‘‘The value of
hydrologic information in stochastic dynamic programming mode
a multireservoir system.’’Water Resour. Res.,31~10!, 2571–2579.

Tejada-Guibert, J., Stedinger, J., and Staschus, K.~1990!. ‘‘Optimization
of the value of CVP’s hydropower production.’’J. Water Resou
Plan. Manage.,116~1!, 52–70.

Terlaky, T., ed.~1996!. Interior point methods of mathematical progra
ming, Kluwer Academic, Dordrecht, The Netherlands.

Thomas, H., and Watermeyer, P.~1962!. ‘‘Mathematical models: A sto
chastic sequential approach.’’Design of water resource systems, A.
Maass, M. Hufschmidt, R. Dorfman, H. Thomas, S. Marglin, an
Fair, eds., Harvard University Press, Cambridge, Mass.

Trezos, T.~1991!. ‘‘Integer programming application for planning of h
dropower production.’’J. Water Resour. Plan. Manage.,117~3!, 340–
351.

Trezos, T., and Yeh, W.~1989!. ‘‘Stochastic dynamic programming a
its application to multi-reservoir systems.’’Computerized decisio
support systems for water managers, J. Labadie et al., eds., ASC
Reston, Va. 559–571.

Turgeon, A.~1980!. ‘‘Optimal operation of multi-reservoir power syste
with stochastic inflows.’’Water Resour. Res.,16~2!, 275–283.

Unver, O., and Mays, L.~1990!. ‘‘Model for real-time optimal flood
control operation of a reservoir system.’’Water Resour. Manage.,4,
21–46.

U.S. Army Corps of Engineers.~1997!. ‘‘Engineering and design: Hydr
logic engineering requirements for reservoirs.’’Engineer manua
1110-2-1420, Washington, D.C.

Valdes, J., Montbrun-Di Filippo, J., Strzepek, K., and Restrepo, P.~1992!.
‘‘Aggregation-disaggregation approach to multireservoir operat

J. Water Resour. Plan. Manage.,118~4!, 423–444.

© ASCE / MARCH/APRIL 2004



e
nd

Ri-
,

f
.’’

ly
ratic

ew
on

od-

ns

e-

tate-

-

el-
f re-
ems.’’

-
n.

–

Varvel, K., and Lansey, K.~2002!. ‘‘Simulating surface water flow on th
Upper Rio Grande using PowerSim 2001.’’SAHRA-NSF Science a
Technology Center for Sustainability of Semi-Arid Hydrology and
parian Areas, Second Annual Meeting, University of Arizona, Tucson
Ariz.

Vasiliadis, H., and Karamouz, M.~1994!. ‘‘Demand-driven operation o
reservoirs using uncertainty-based optimal operating policiesJ.
Water Resour. Plan. Manage.,120~1!, 101–114.

Wasimi, S., and Kitanidis, P.~1983!. ‘‘Real-time forecasting and dai
operation of a multireservoir system during floods by linear quad
Gaussian control.’’Water Resour. Res.,19~6!, 1511–1522.

World Commission on Dams.~2000!. Dams and development: A n
framework for decision-making, Earthscan Publications Ltd., Lond
and Sterling, Va.

Wurbs, R.~1993!. ‘‘Reservoir-system simulation and optimization m
els.’’ J. Water Resour. Plan. Manage.,119~4!, 455–472.

Wurbs, R.~1996!. Modeling and analysis of reservoir system operatio,
Prentice-Hall, Upper Saddle River, N.J.

Yakowitz, S. ~1982!. ‘‘Dynamic programming applications in water r
sources.’’Water Resour. Res.,18~3!, 673–696.
JOURNAL OF WATER RESOURCES P
Yeh, W. ~1985!. ‘‘Reservoir management and operations models: A s
of-the-art review.’’Water Resour. Res.,21~12!, 1797–1818.

Yeh, W., and Becker, L.~1982!. ‘‘Multi-objective analysis of multi
reservoir operations.’’Water Resour. Res.,18~5!, 1326–1336.

Yeh, W., and Trott, W.~1972!. ‘‘Optimization of water resources dev
opment: Optimization of capacity specification for components o
gional, complex, integrated, multi-purpose water resources syst
Engineering Rep. No. 7245, Univ. of California, Los Angeles.

Yi, J., Labadie, J., and Stitt, S.~2003!. ‘‘Dynamic optimal unit commit
ment and loading in hydropower systems.’’J. Water Resour. Pla
Manage.,129~5!, 388–398.

Young, G.~1967!. ‘‘Finding reservoir operating rules.’’J. Hydraul. Div.,
Am. Soc. Civ. Eng.,93~6!, 297–321.

Zagona, E., Fulp, T., Goranflo, H. M., and Shane, R.~1998!. ‘‘RiverWare:
A general river and reservoir modeling environment.’’Proc., First
Federal Interagency Hydrologic Modeling Conf., Las Vegas, 113
120.

Zeleny, M.~1982!. Multiple criteria decision making, McGraw-Hill, New
York.
LANNING AND MANAGEMENT © ASCE / MARCH/APRIL 2004 / 111


