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Introduction proving the operational effectiveness and efficiency of existing
. o reservoir systems for maximizing the beneficial uses of these
According to the World Commission on Dani$VCD 2000, projects. In addition, many of the adverse impacts of large storage

many large storage projects worldwide are failing to produce the projects on aquatic ecosystems can be minimized through im-
level of benefits that provided the economic justification for their proved operations and added facilities, as demonstrated by the
development.. This may be due in some inst.anc.:es to an inordinfateTennessee Valley AuthorityTVA) (Higgins and Brock 1999
focus on project design and construction, with inadequate consid-cqnstruction of bottom outlets or selective withdrawal structures
eration of the_ more mundane operations and maintenance 1ssUegan pass sediments downstream and improve water quality con-
once the project is completed. Performance related to original giions. Unfortunately, many existing reservoir operational poli-
project purposes may also be undermined when new unplannedies f4l to consider a multifacility system in a fully integrated
USES arise that were not originally cons@ered in the project au- manner, put rather emphasize operations for individual projects.
Fhorlzafuon and developmgn_t. These might |nclud_e municipal/ However, the need for integrated operational strategies confronts
industrial water supply, minimum streamflow requirements for system managers with a difficult task. Expanding the scope of the

environmental and ecological concerns, recreational enhance'working system for more integrated analysis greatly multiplies

ment, am accr:]onr?modatlng s_horellne encroacr;ment and deve_:ppfhe potential number of alternative operational policies. This is
ment. Ath ougd't ere may exist some de%ree 0 Commef?surab'f'lt.yfurther complicated by conflicting objectives and the uncertainties
among these diverse project purposes, there Is more often conflich g ciated with future hydrologic conditions, including possible
and competition, particularly during pervasive drought condi- impacts of climate change

tions. In af?d't'on' p_erfo(;rgance oflpublhcaI:y owned reservoir sys- - qhiima coordination of the many facets of reservoir systems
tems Is often restricted by complex legal agreements, contracts, o jires the assistance of computer modeling tools to provide

federal regulations, interstate compacts, and pressures from variormation for rational operational decisions. Computer simula-
ous spemal mtergsts. ) tion models have been applied for several decades to reservoir
V.V'th construction of new large-scale water storage projects at system management and operations within many river basins.
a V|rtua_l stanc_isnll m_the U'S_'_ and other de\{gloped countries, Many models are customized for the particular system, but there
along w!th an increasing mob|I|zaF|on of opposmon to large stqr- is also substantial usage of public domain, general-purpose mod-
age projects in developing countries, attention must focus on im- els such a${EC 5 (Hydrologic Engineering Center 198avhich
— _ _ _ is being updated ablEC RESSIMo include a Windows-based
'Professor, Dept. of Civil Engineering, Colorado State Univ., Ft. graphical user interfacélipsch et al. 2002 Spreadsheets and
Collins, CO_ 80523-1372. E-ma_ll: labadie@engr.colostate.edu . _ generalized dynamic simulation models SuchSEELLA (High
Note. Discussion open until August 1, 2004. Separate disCUSSIONS parformance Systems, Inare also populatStein et al. 2001
must be submitted for individual papers. To extend the closing date by Other similar system d,ynamics simulation models inC.IE’dEW-

one month, a written request must be filed with the ASCE Managing . .
Editor. The manuscript for this paper was submitted for review and pos- ERSIM (Powersim, Ino. applied by Varvel and Lanse002),

sible publication on August 22, 2002; approved on November 27, 2002. and VENSIM(Ve_ntanQ Systems,_ Ir?capplled by Caballero et al.

This paper is part of thdournal of Water Resources Planning and  (2001. These simulation odescriptivemodels help answewhat
Management Vol. 130, No. 2, March 1, 2004. ©ASCE, ISSN 0733- if questions regarding the performance of alternative operational
9496/2004/2-93-111/$18.00. strategies. They can accurately represent system operations and
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are useful for Monte Carlo analysis in examining long-term reli- tion as a tool controlled by reservoir system managers who bear
ability of proposed operating strategies. They are ill-suited, how- responsibility for the success or failure of the system to achieve
ever, toprescribingthe best or optimum strategies when flexibil- its prescribed goals. This places the focus on providing support
ity exists in coordinated system operations. Prescriptive for the decision makers, rather than overly empowering computer
optimization models offer an expanded capability to systemati- programmers and modelers.
cally select optimal solutions, or families of solutions, under An example of an optimization model incorporated into a de-
agreed upon objectives and constraints. cision support systertDSS is theMODSIM river basin network
The purpose of this paper is to assess the state-of-the-art inflow model (Labadie et al. 2000 which is currently being used
reservoir system optimization models and consider future direc- py the U.S. Bureau of Reclamation for operational planning in the
tions. This is an update of a review that appearedVater Re- Upper Snake River Basin, Idah@.arson etal. 1998 The
sources Updatgublished by The Universities Council on Water \indows-based graphical user interfag@Ul) in MODSIM al-
ResourcesUCOWR) (Labadie 199Y. The focus is primarily on  |ows the user to create any reservoir system topology by simply
optimization of systems of reservoirs, rather than a single réser-cjicking onvarious icons and placing systesbjectsin any de-
voir. This is not meant to imply that single reservoir optimization - gjre configuration on the screen. Data structures embodied in
is unimportant, but rather the substantial technological challengeseach model object on the screen are controlled by a database
and rewards abide with integrated optimization of interconnected management system, with formatted data files prepared interac-
reservoir systems. Optimization methods designed to prevalil over,[iver and a network ,flow optimization model automatically ex-

(ristce ofresenvol Systems are Soruinzed, a5 wel s extonsion CULEd flom the inteface. Results of the optmization are pre-
. ST ystems o ’ . sented in useful graphical plots, or even customized reports
into multiobjective optimization. Heuristic programming methods . - . .

) i . . ; available through a scripting language included wWMioDSIM
using evolutionary and genetic algorithms are described, alongCom lex. non-network constraints on the optimizatiorM@®D-
with the application of artificial neural networks and fuzzy rule- Pex, P

. : : . gy SIM are incorporated through an iterative procedure using the
based systems for inferring reservoir system operating policies. _ .
4 ! "9 volr sy perating polic embeddedPERL scripting languageRiverWare (Zagona et al.

1998 affords similar DSS functionality with an imbedded pre-
Overcoming Hindrances to Reservoir System emptive goal programming model providing the optimization ca-
Optimization pabilities. RiverWarehas been successfully applied to the TVA
. . ) ... system for operational plannin@iddle 2002.
Despl_te _sev_eral decades of mten_swe research on the application Although lacking a generalized Windows-based graphical user
olf$38pt|m|z§t{,<\)/n ?oigg tohreservcllr;ystemf., aythors Subd][ as Yehinterface,CALSIM has been developed by the California Depart-
Eh St_’dnl q ur IS( 3t avedno el a clgn_ |nu||ng gatpt_ € weFe)n ment of Water Resources to allow specification of objectives and
.slore ica e;/e ‘t’ﬁmﬁf‘ S a.? . rela -v(;(:or impiementa |on§[. 5" constraints in strategic reservoir systems planning and operations
sIbie reasons for this disparity inc udd) many FESErvolr system — \yithout the need for reprogrammirilylunevar and Chung 1999
pperators are skeptlpal aboqt models purportmg to replace the'rSimiIar to the use OPERLSscript inMODSIM, CALSIMemploys
judgment and prescribe solution strategies and feel more comfort- R . '
i o . - an English-like modeling language callalRESL (Water Re-
able with use of existing simulation model®) computer hard- . . . .

S Y . . .~ ... sources Engineering Simulation Languageat allows planners
ware and software limitations in the past have required simplifi- and operators to specify targets, objectives, guidelines, con-
cations and approximations that operators are unwilling to accept; traint d iated. orioriti P f liar t t’h
(3) optimization models are generally more mathematically com- é_ralnl S’t a'?ﬂ ass;)u? el pr'or.'tr']ef' N ways ?jmltlr?r dot ema
le than simaton model,and hrefore mare il o com- TP 24 e 6ol son win e series and v gt feac
prehend;(4) many optimization models are not conducive to in- programming solver for périod by period solutigBALSIM Il

corporating risk and uncertaintys) the enormous range and I heDWRSIMand PROSIMmodels th ed
varieties of optimization methods create confusion as to which to replaces t Vian 'MOodels that required con-
tinual reprogramming as new objectives and constraints were

select for a particular applicatiof§) some optimization methods, o . -
such as dynamic programming, often require customized programspecmed, for coordinated operation of the Federal Central Valley
and California State Water Projec®ASIS(HydroLogics, Inc) is

development; and7) many optimization methods can only pro- o ] ]
duce optimal period-of-record solutions rather than more useful & Similar modeling package t0ALSIMthat uses an Operations
conditional operating rules. Optimal period-of-record solutions Control Language(OCL) for developing linear programming
are criticized in theEngineer Manual on Hydrologic Engineering Models for multiobjective analysis of water resource systems.
Requirements for Reservoird).S. Army Corps of Engineers The explosion of readily available information through the In-
1997; pp. 4-5 where it is stated that “...the basis for the system ternet has increased the availability of advanced optimization
operation are not explicitly defined. The post processing of the Mmethods and provided freely accessible software and data re-
results requires interpretation of the results in order to develop ansources for successful implementation. Many powerful optimiza-
operation plan that could be used in basic simulation and appliedtion software packages are available through the Internet, such as
operation.” from the Optimization Technology Cent&Morthwestern Univer-
Many of these hindrances to optimization in reservoir system Sity and Argonne National Laboratory, Argonne, lllinpist
management are being overcome through ascendancy of the conthttp://www.mcs.anl.gov/otc/otc.htinl In  addition,  several
cept of decision support systemend dramatic advances in the spreadsheet software packages available on desktop computers
power and affordability of desktop computing hardware and soft- include linear and nonlinear programming solvers in their numeri-
ware. Several private and public organizations actively incorpo- cal toolkits. The generalized dynamic programming package
rate optimization models into reservoir system management CSUDP (Labadie 1999 facilitates the use of dynamic program-
through the use of decision support systéhebadie et al. 1989 ming models, avoiding the need to develop new code for each
Incorporation of optimization into decision support systems has application.CSUDPsoftware is freeware and can be downloaded
reduced resistance to their use by placing emphasis on optimiza-at (ftp://modsim.engr.colostate.edu/distjib/
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The power and speed of the modern desktop computer have
reduced the degree of simplifications and approximations in res-
ervoir system optimization models required in the past, and
opened the door to greater realism in optimization modeling. The
primacy of the system manager over the model is also empha-
sized in the incorporation of knowledge-based expert systems into
reservoir system modeling which recognize the value of the in-
sights and experience of reservoir system operators. Despite these
advances, optimization of the operation of an integrated system of
reservoirs still remains a daunting task, particularly with attempts
to realistically incorporate hydrologic uncertainties.

Reservoir System Optimization Problem

Objective Function Fig. 1. Example reservoir system configuration

According to the ASCE Task Committee on Sustainability Crite-

ria (1998, “Sustainable water resource systems are those de-

signed and managed to fully contribute to the objectives of soci- n _

ety, now and in the future, while maintaining their ecological, ft(s[,rt)=2 K-&(Sit,Sit+1:it) - Nit(Sit»Si t+1) - it Aty
environmental and hydrological integrity.” Objective functions =1 5
used in reservoir system optimization models should incorporate )
measures such as efficientye., maximizing current and future ~ wheree;=overall powerplant efficiency at reservdilas a func-
discounted welfang survivability (i.e., assuring future welfare ex-  tion of average head and discharge during petjdu; =average
ceeds minimum subsistence leyeknd sustainabilityi.e., maxi- head as a function of beginning and ending period storage levels
mizing cumulative improvement over time.oucks(2000 states (calculated from the reservoir mass balance or system dynamics
that “sustainability measures provide ways by which we can equation, as well as possibly the discharge if tailwater effects are
quantify relative levels of sustainability... One way is to express included;K=unit conversion factor; andt;; =number of on-peak
relative levels of sustainability as separate weighted combinationshours related to the load factor for powerplanthis is a highly

of reliability, resilience and vulnerability measures of various cri- nonconvex function characterized by many local maxiffeuxe

teria that contribute to human welfare and that vary over time and et al. 1980, and may be discontinuous and nondifferentiable if
space. These criteria can be economic, environmental, ecologicalloading of individual turbines in the powerplant is considered.
and social.” The strategy othared vision modelingPalmer Other objective functions related to vulnerability criteria may at-
2000 is useful for enhancing communication among impacted tempt to minimize deviations from ideal target storage levels,
stakeholders and attaining consensus on planning and operationalater supply deliveries, discharges, or power capacities. If eco-

goals. nomic benefit and cost estimates are available for these uses, then

A generalized objective function for deterministic reservoir the objective may be to maximize total expected net benefits from
system optimization can be expressed as operation of the system, but with consideration of long-term sus-

T tainability.
max (or min) > af(s.r)+ariierii(srey) (1) _
r t=1 Constraints

wherer,=n-dimensional set of control or decision variables., The system dynamics or state-space equations are written as fol-
releases fromn interconnected reservojrsduring period t; lows, based on preservation of conservation of mass throughout

T=length of the operational time horizog=n-dimensional state  the system:
vector of storage in each reservoir at the beginning of petiod _ B _ _
fi(s,r;) =objective to be maximizetbr minimized; ¢, 1(Sr+1) S SO Qe h(s S0 —de (for t=1,..1) - (3)

=final term representing future estimated bendfitscosts be- where s =storage vector at the beginning of tinteq,=inflow
yond time horizonT; and a;=discount factors for determining  vector during timet; C=system connectivity matrix mapping
present values of future benefiisr costs. flow routing within the system;l,=vector combining spills,

The dynamic nature of this problem reflects the need to repre- evaporation, and other losses during titnand d;=required de-
sent an uncertain future for sustainable water management; i.e.mands, diversions, or depletions from the system. In some formu-
“... a future we cannot know, but which we can surely influence” lations, diversions are treated as decision variables and included
(Loucks 2000. The time steg used in this formulation may be in the objective function as related to benefits of supplying water.
hourly, daily, weekly, monthly, or even seasonal, depending on Accurate calculation of evaporation and other water losses in the
the nature and scope of the reservoir system optimization prob-term l,(s;,S.1) creates a set of nonlinear implicit equations in
lem. Hierarchical strategies may also be pursued whereby resultss , ; which can be difficult to evaluate and constitute a nonconvex
from long-term monthly or seasonal studies provide input to more feasible set. Initial storage levets are assumed known and all
detailed short-term operations over hourly or daily time periods flow units in Eq.(3) are expressed in storage units per unit time.

(Becker and Yeh 1974; Divi and Ruiu 1989 Spatial connectivity of the reservoir network is fully described
The objective function may be highly nonlinear, such as for by the routing or connectivity matri€. For the example reservoir
maximizing hydropower generation system of Fig. 1, the connectivity matrix is
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-1 0 0 0
0 -1 0O 0

o +1 -1 o Stochastic Deterministic
+1 0 +1 -1 Sreamflow Optimization r€—
Model
Additional state variable nodes with zero storage capacity may Model
represent nonstorage locations where inflows and diversions Lgr:g
occur. For more complex system configurations that are nonden- Historical
dritic, such as bifurcating systems and off-stream reservoirs, a Record
more complex link-node connectivity matrix is required. Lagged
routing of flows can be considered by replacing the t&€min
Eq. (3) with =X_,C.r,_., where elements of the routing matrices
C, may be fractions representing lagging and attenuation of
downstream releases.
Explicit lower and upper bounds on storage must be assigned
for recreation, providing flood control space, and assuring mini-
mum levels for dead storage and powerplant operation.
Sl+1,min$$+1$st+l,max (fOI’ t:]-v---rT) (4)
Limits on reservoir releases are specified as L— 3 —
Mmin<Tt<Tymax (for t=1..T) (5) Simulation Refinement
. o . . Model and Testing
These limits maintain minimum desired downstream flows for
water quality control and fish and wildlife maintenance, as well as 8
protection from downstream flooding. In some cases, it may be 2]
necessary to specify these limits as functions of head where al- 8
lowable discharges depend on reservoir storage levels. Additional Time
constraints may be imposed on tbkangein release from one
period to the next to provide protection from scouring of down- Fig. 2. Implicit stochastic optimizatiorilSO) procedure

stream channels. When evaluating long term historical or syn-
thetic hydrologic sequences, or multiple short-term sequences,

difficulties may arise in finding feasible solutions that satisfy Hall and Dracup(1970; Buras (1972; Loucks et al.(1981);

these constraints. In these cases, it may be necessary to relakiays and Tung1992; Wurbs (1996; and ReVelle(1999.
these as explicit constraints and indirectly consider them through

use of weighted penalty terms on violation of these constraints in

the objective function. _ o Implicit Stochastic Optimization
Other constraints may represent alternative objectives that
must be maintained at desired target levels The solution of Eqs(1)—(6) may be accomplished by implicit

f—( sr)=e ©) stochasti(_: qptimizatio@lSO) m_et_hods, also referred _to as Mont_e
' Carlo optimization, which optimize over a long continuous series
Example targets might include annual water supply requirementsof historical or synthetically generated unregulated inflow time
or power capacity maintenance. These targets may be adjustederies, or many shorter equally likely sequen@és. 2). In this
parametrically to compute tradeoff relations between the primary way, most stochastic aspects of the problem, including spatial and
objective of Eq.(1) and secondary objectives as a means of pro- temporal correlations of unregulated inflows, are implicitly in-
viding multiple objective solution§Cohon 1978 cluded and deterministic optimization methods can be directly
The optimization model defined in Eg4.)—(6) is challenging applied. The primary disadvantage of this approach is that optimal
to solve since it is dynamic, potentially nonlinear, and nonconvex; operational policies are unique to the assumed hydrologic time
and large-scale. In addition, unregulated inflows, net evaporationseries. Attempts can be made to apply multiple regression analy-
rates, hydrologic parameters, system demands, and economic pasis and other methods to the optimization results for developing
rameters should often be treated as random variables, giving riseseasonal operating rules conditioned on observable information
to a complex large-scale, nonlinear, stochastic optimization prob- such as current storage levels, previous period inflows, and/or
lem. In this formulation, it is assumed that calibration and verifi- forecasted inflows. Unfortunately, regression analysis may result
cation studies have been carried out to assure the model is capablan poor correlations that invalidate the operating rules, and at-
of reasonably reproducing historical energy production, storage tempting to infer rules from other methods may require extensive
levels, and flows throughout the system. This review explores trial and error processes with little general applicability.
several solution strategies, including implicit stochastic optimiza-
tion, explicit stochastic optimization, real-time optimal control
with forecasting, and heuristic programming methods. For more
detailed treatment of these topics, the reader is referred to a num-Since 1SO models can be extremely large-scale, covering a
ber of important books written over the years dealing with opti- lengthy time horizon, it is critical that only the most efficient
mization of water resource systems in general, and optimal opera-optimization methods are applied. One of the most favored opti-
tion of reservoirs in particular. These include: Maass et1#62);, mization techniques for reservoir system models is the simplex

Linear Programming Models
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method of linear programming and its variarfidéash and Sofer Time 1 Time2 veo TimeT
1996. These models require all relations associated with Egs. Carryove
(1)—(6) to be linear or linearizable. The advantages of linear pro- StOfageArw

gramming(LP) include: (1) ability to efficiently solve large-scale » oo

problems;(2) convergence to global optimal solutior(8) initial l Flow Arcs

solutions not required from the usdr) well-developed duality

theory for sensitivity analysis; an®) ease of problem setup and

solution using readily available, low-cost LP solvers. Recent al- > y il —>

ternatives to the simplex method, such as the affine scaling and
interior projection methodé&Terlaky 1996, are particularly attrac-
tive for solving extremely large-scale problems.

Hiew et al.(1989 applied 1SO using LP to the eight-reservoir ¢
Colorado-Big Thompson(C-BT) project in northern Colorado.
Use of a 30 year historical hydrologic record of monthly unregu- Fig. 3. Illustration of dynamic network showing carryover storage
lated inflows to the system resulted in a linear programming prob- grcs
lem with 12,613 variables and 5,040 constraints. Multiple regres-
sion analysis was applied to the LP model results to produce

Flow Arcs

optimal lag-one storage guide curves: Nodes are storage or nonstorage points of confluence or diver-
_AY +BO 4T - sion, and links represent reservoir releases, channel or pipe flows,
S+1=AY +Bai-1tC ™ carryover storage, and evaporation and other losses. If all rela-

where sf =optimal storage levels obtained from the linear pro- tions in Eqs(1)—(5) are linear, then the following dynamic, mini-
gramming solutiong,=observed hydrologic inflows; and corre- mum cost network flow problem results:
lation matricesA, B and vectorc are calculated from multiple
regression analysis performed on the LP results. Coefficients of minimize 2 2 CoXet (8)
determination obtained from this analysis ranged from 0.795 to =
0.996 for the larger reservoirs, with the remaining reservoirs ei-
ther small or with water levels only allowed to vary a few feet per
year. Simulation of the system operations using the optimal stor- . . _
age guide curves of Eq7) confirmed their validity. This study % Xje ™ E Xq=0 (for all ieN; for all t=1,..1)
was successful because of the ability of linear models to accu- 9)
rately represent the system behavior, along with the fortunate cal-
culat)i/on F:)f high correﬁation coefficients ot?tained from the mul- le<Xp<ug  (for all £cA; for all t=1...T) (10)
tiple regression analysis. For other systems, these advantages mayhereA=set of all arcs or links in the networki=set of nodes;
not be in evidence. O,=set of all links originating at nodeé (i.e., outflow linkg;
Other extensions of linear programming into binary, integer, |,=set of all links terminating at nodé (i.e., inflow links);
and mixed-integer programming may be valuable for representingx,,=flow rate in link ¢ during periodt; c,,=costs, weighting
highly nonlinear, nonconvex terms in the objective function and factors, or priorities per unit of flow rate in link during periodt;
constraints(e.g., Trezos 1991 but these methods are consider- andl,; andu,,=lower and upper bounds, respectively, on flow in
ably less efficient computationally and would likely be intractable link €.
for use in 1ISO. Needham et &R000 applied mixed integer lin- Fig. 3 illustrates a fully dynamic network where the horizontal
ear programming to deterministic flood control operations in the arcs represent carryover storagee., s) in the same physical
lowa and Des Moines Rivers, but noted the potential for exces- reservoir from one period to the next, whereas the vertical arcs
sive computer times when extended to stochastic evaluation. Thisare flows, releases, and diversio@i®., r,) during the current
study came to the rather counterintuitive conclusion that coordi- period. Eqs(8)—(10) define apure network formulation where all
nated operation of reservoir systems does not necessarily improvenetwork data can be represented by a set of arc parameters
performance, which stands in stark contrast with other studies that[ I, ,u,,,c..]. For fully circulating networks, additional artificial
have shown just the opposite.g., Shim et al. 2002 nodes and links must be added for satisfying overall mass balance
Piecewise linear approximations of nonlinear functions are throughout the entire network. Comparative studies by Kuczera
often used inseparable programmin@pplications and solved (1993 and Ardekaaniaan and Moi1995 have shown the dual
with various extensions of the simplex method, although problem coordinate ascerRELAXalgorithm (Bertsekas and Tseng 1994
size can become excessive in some cases. Functions of more thato be the most efficient network solver, as compared to primal-
one variable can be approximated using multilinear interpolation based algorithms and variations on the out-of-kilter metttemd
methods over a multidimensional grid. For minimization prob- and Fulkerson 1962
lems, these functions must be convex; otherwise, more time con-  Several network algorithms allow designation of node supply
sumingrestricted basis entrgimplex algorithms must be applied and demandi.e., entry of values other than zero on thight-
which fail to guarantee convergence to global optima. Crawley hand sideof Eq. (9)] without requiring specification of artificial
and Dandy(1993 applied separable programming to the multi- nodes and links, although this is only possible when no demand
reservoir Metropolitan Adelaide water supply system in Australia. shortages occur. For so-callegtworks-with-gainsEg. (9) must
be adjusted with coefficients not equal +d, O, or +1 to allow
for channel losses, evaporation losses, and return flows. Further
extensions intgeneralized networkallow inclusion ofside con-
It is evident from Fig. 1 that an interconnected reservoir system straints|i.e., Eq.(6)] that violate the pure network structure. All
can be represented as a network of nodes and lipksarcs. of these deviations from the pure network format exact a compu-

subject to

Network Flow Optimization Models
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tational price. In spite of this, Sun et d1995 claim that the the SLP method was by far the most efficigoy up to an order of
generalized network solver is “11-17 times faster” than solution magnitude in computational speeaimong the various nonlinear
by a state-of-the-art revised simplex algorithm. For pure network programming algorithms. Grygier and Steding&®85 also con-
problems, this speedup factor may increase to more than twocluded that SLP was the most efficient of the mathematical pro-
orders of magnitude, while requiring significantly less computer gramming algorithms evaluated. In SLP, all nonlinear functions
memory. Hsu and Chen@2002 applied a similar generalized are linearized around an initial or nominal solution using the first
network flow optimization model for long-term supply-demand two terms of the Taylor series expansion. Successive solutions are
analysis in a river basin in northern Taiwan. Although the results confined to specifiettust regionsor step bounds to avoid insta-
show improvement over previous simulation studies, the perfect bilities in convergence. Solution of the resulting linear program-
foreknowledge assumptions in the deterministic evaluation and ming problem then provides the basis for relinearization of the
lack of development of conditional operating rules diminish the nonlinear functions, with the step bounds appropriately reduced
value of the study. as the process converges. A disadvantage of SLP is that “although
Fredericks et al(1998 show that many aspects of networks- intuitively appealing and popular because of the availability of
with-gains and generalized networks can be solved through suc-efficient linear programming solvers,the method is.. not guar-
cessive solution of pure network problems with adjusted arc anteed to converge(Bazarra et al. 1993
parameters, ultimately converging to solution of the original prob- Martin (1983 applied the SLP method to the Arkansas-White-
lem. This approach may be more efficient if the speedup factor for Red River system of Texas, noting that the linearized subprob-
pure networks is compensated by the need for a few iterations tolems could be efficiently solved using a minimum cost network
achieve convergence. Labadie and Bal@001 report an addi-  flow solver. A fully dynamic network model is used, but solutions
tional advantage of the successive solution approach that avoidsgre generated over a 5 year period by a moving overlapping win-
the need for computationally expensive unit priority separation dow approach that finds optimal dynamic solutions over succes-
proceduregisrael and Lund 199%or correct allocation of flows  sjve 2 year periods. The rationale for limiting the operational
according to water rights and other prioritizing mechanisms. The jnterval in each optimization is based on the likelihood of the
successive solution procedure has a further advantage of allowingstorage projects in the system filling based on carryover storage
consideration of non-network side constraints and the final con- capability. Once a project fills, all memory of previous operations
Vergent solution still prOVides node and arc prices as dual vari- is IOSt; hence’ fu”y dynamic solutions over extremely |Ong time
ables that are useful for sensitivity analysis. horizons, such as in Lund and Ferre{i®96, may not be neces-
Lund and Ferreira1996 applied a fully dynamic network  sary. Barros et al(2003 applied the SLP technique to the Bra-
flow algorithm HEC-PRM to the mainstem Missouri River Res- zjlian hydropower system, one of the largest in the world. This
ervoir system. Although the network itself is not large., six study also confirmed the excellent performance of SLP, both in
storage nodes and six intermediate flow ngdélse system is accuracy and computational efficiency.
optimized in monthly time steps over a 90 year historical period, Successive quadratic programmit®QP relies on the com-
_resulting i_n an immense dynam_ic net\_/vork_. The objective func_tion putational efficiency of modern quadratic programmi@p) al-
is approximated by convex, piecewise linear penalty functions gorithms and the ability of quadratic expansions to better approxi-
characterized through specification of multiple links connecting ate nonlinear functions than linear relations. Instead of
two nodes, with bounds and unit costs defined by flow limits and |inearizing the objective function, a quadratic approximation is
slopes of each linear piece. In this study, ISO procedures of per-performed on the Lagrangian function for the problem, although
forming regression analyses on operating rules that condition 0p-the constraints continue to be linearized. Successive quadratic ap-
timal releases on total system storage resulted in poor Co”e|a“°”proximations converge to a Karush-Kuhn-Tuck&KT) point
coefficients. Empirical trial-and-error processes are invoked, satisfying the necessary conditions for an optimal solut®az-
whi.ch uIti_mater result in reasonable ruleg when evaluated using gyr3 et al. 1998 To avoid a potentially time consuming solution
a simulation model for the system operation. of a large-scale QP problem over many time intervals, Arnold
et al. (19949 proposed a procedure that takes advantage of the
special structure of reservoir system optimization problems and
provides a highly efficient solution algorithm for the QP problem.
Many reservoir system optimization problems cannot be realisti- Numerical effort grows only linearly with the length of the opera-
cally modeled using piecewise linearization, and must be attackedtional horizonT since the method decomposes the problem into
directly as nonlinear programming problems, particularly with in- subproblems for each time step. Without this modification, it is
clusion of hydropower generation in the objective function and/or unlikely that SQP is suitable for ISO of reservoir systems due to
constraints. Nonlinear programmin®lLP) algorithms generally exponential growth of computer time with the number of time

Nonlinear Programming Models

considered the most powerful and robust drg:successiveor steps.

sequentiallinear programmindSLP); (ii) successivéor sequen- Tejada-Guibert et al(1990 applied SQP to a five-reservoir
tial) quadratic programmingSQP (or projected Lagrangian  portion of the Central Valley Proje¢CVP) of California using

method; (iii) augmented Lagrangian methpat method of mul- MINOS (Murtagh and Saunders 1987The objective function

tipliers (MOM)]; and (iv) the generalized reduced gradient includes nonlinear terms representing operating costs avoided and
method(GRG). All require that the functions in Eq$1)—(6) are projects dependable hydropower capacity for each powerplant.
differentiable, which may be problematic in some cases, particu- Constraints in the form of Eq6) include nonlinear functions of
larly for hydropower systems. Explicit calculation of derivatives energy production per unit release. A 3 year optimization over
is unnecessary, however, with application of automatic differen- monthly time steps resulted in a problem with 1,122 variables and
tiation methodqSinha and Bischof 1998 1,764 constraints. The authors note that computer execution times
Hiew (1987 performed a comprehensive comparative evalua- increase approximately to the square of the length of the opera-
tion of the SLP, GRG, and a feasible direction form of SQP for tional period, which does not bode well for application of ISO
hydropower systems of up to seven reservoirs, and concluded thabver long time periods. Barros et &2003 also applied SQP
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Fig. 4. lllustration of reservoir system optimization as sequential decision process

using a newer version dflINOS(Murtagh and Saunders 199® sistent with the problem of any ISO application, since unique

the large-scale Brazilian hydropower system, and compared per-decisions are generated for each synthetic inflow sequence, the

formance with SLP. Although it was found to produce more ac- decisions are represented as randomized release rules that are

curate results, computational requirements restricted its use to op-difficult to implement.

timization over limited real-time forecast horizons rather than for

implicit stochastic optimization over lengthy time horizons.
Arnold et al. (1994 compared SQP with the augmented La-

grangian method or method of multiplief®lOM). MOM uses a  Next to linear programming, dynamic programming has been the
Lagrangian function similar to SQP, but augmented with exact most popular optimization technique applied to water resources
penalty terms. The original constrained nonlinear optimization planning and management in general, and reservoir operations in
problem is replaced with a sequence of easier-to-solve uncon-particular (Yakowitz 1982. Dynamic programmingDP) effec-
strained nonlinear optimization problems. Arnold et(aB94 ap- tively exploits the sequential decision structure of reservoir sys-
plied SQP and MOM to the four-reservoir Zambezi River system tem optimization problem&Fig. 4). As originally developed in its

in southern Africa ovea 2 year period in monthly time steps. The general form by Bellman(1957), DP decomposes the original
model includes realistic nonlinear terms for hydropower produc- problem into subproblems that are solved sequentially over each
tion and evaporation calculations, resulting in a large-scale, dy- stage(i.e., time periodl This represents a significant advantage
namic optimization problem with nonlinear objective function for |SO since computational effort increases only linearly with the
and constraints. Results show that MOM converged more rapidly numper of stages, whereas most of the previous methods display

Discrete Dynamic Programming Models

than SQP, but to a somewhat less accurate solution. _ exponential increases. The earliest application of ISO applied dy-
The generalized reduced gradieGBRG) method is essentially  namic programming to a single reservoir operational problem
a constrained gradient search technique that solvesizcedop- (Young 1967. In its discrete form, DP overcomes difficulties with

timization problem with respect to the independent decision vari- fynctional relationships in the objective and constraints that are
ablesr,. The storage state variablgsare easily determined from  nonlinear, nonconvex, and even discontinuous. It is also more
Eq. (3) for a given set of decision variables. The MINOS op- readily extensible to explicit stochastic optimization problems,
timization packageMurtagh and Saunders 199kivokes GRG  and existence of constraints such as E@s.and (5) actually

for nonlinear programming problems with linear constraints. Al- jmprove solution efficiency, in contrast with the other methods
though the method can theoretically be applied to nonlinear con- giscussed.

straints through successive linearization, it appears to be less ef-  ggjution of Egs(1)—(5) involves calculating an optimal return
ficient in this case. Unver and Mayd990 applied GRG to o cost-to-gofunctionF,(s) representing the maximum retufor
optimal flood control in the Highland Lakes system of the Lower minimum cost accumulated from the current perigdtage t
Colorado River Basin, Texas. GRG had to be combined with pen- through the final period, conditioned on a given initial storage
alty function methods similar to MOM to properly treat the in-  state vectos,. Bellman'sprinciple of optimality(Bellman 1957
equality constraints on the dependent reservoir storage variablesiates thatno matter what the initial stage and state of a Mar-
S- kovian decision process, there exists an optimal policy from that
Peng and Buras2000 also applied GRG(using MINOS stage and state to the enilor all discrete combinations ef, the
within an ISO scheme to the five major upstream lakes in the fynction F(s) is optimized recursively over each time period in
West Branch Penobscot River, Maine. Similar to the approach of 3 (ysually backwards sequence for=T, T—1,...,1:

Martin (1983, the GRG optimization is performed in monthly

time steps over a moving 12 month forecast window. A synthetic Fiu(s)=max (or min) [efi(s,re)+Feea(s+0)]  (11)
streamflow generation model produces multiple, equally likely "t

inflow sequences over the next 12 months, starting from the cur-subject to Eqs(3)—(5). Recursive calculations are initiated with
rent month, with the SQP optimization performed for each se- B

guence. Although operational decisions are obtained for each Froa(Sred) =ore1@realSred) (12)
month, only the current month decisions are implemented. Con-  DP takes advantage of the temporal separability of the problem
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defined by Eqgs(1)—(5), although inclusion of Eq(6) invalidates sive solutions of the DPSA algorithm with updated estimates of
this separability. Consideration of the latter requires additional river reach routing coefficients allowed full incorporation of rout-
state variables in the formulation or application of Lagrange mul- ing in the optimization over hourly time steps. DPSA was also
tiplier techniquegDreyfus and Law 1977 Another advantage of  applied by Yi et al.(2003 for optimal hourly scheduling of hy-
DP is the calculation of flexibléeedbackor closed-loopoptimal dropower units in the Lower Colorado River Reservoir System.
policiesr? (s) conditioned on the current system stateExcept ~ Comparison of the DPSA solutions with a large-scale mixed in-
for optimal control theory, the development of optimal feedback teger programmingMIP) formulation provided comparable ac-
policies is unique to dynamic programming. Optimal storage curacy, but at a fraction of the computer execution time required
guide curvess’, ;(s) can also be calculated, which may be more by the MIP model.
useful to reservoir system operators than optimal release policies. Incremental dynamic programmin¢PP) was first introduced
Discrete dynamic programming increments reservoir storage by Larson(1968, and applied by Hall et a[1969 to a portion of
levels in the vectors into a finite number of levels and then the Central Valley Project in northern California. Discrete differ-
performs conditional optimization in Eq11) over all possible ~ ential dynamic programmingDDDP) was later offered by
discrete combinations of storage levels. Global optimality, in a Heidari et al.(1971), but closely resembles the IDP technique.
discrete sense, is assured if the optimization in @) is per- These algorithms address the dimensionality problem by restrict-
formed via exhaustive enumeration over all discrete combinationsing the state-space to a corridor around a current given solution
of releases. Since this optimization is performed conditionally on St . For each state variable, only three discrete values are al-
all discrete combinations of storage vectpr the specter of the  lowed for a specified storage incremes; :[s{—As; ,s{ ,s{
curse of dimensionalitya term originally coined by Bellman  +As;]. If new solution trajectories are within the boundaries of
(1961)] arises. Assuming an averagernfdiscretization levels for ~ the corridor, the optimum has been found. Otherwise, a new cor-
each ofn reservoirs, computational time and storage requirements ridor is defined around the new solution and the process repeats.
are proportional tan". For system dimensions beyond three con- The computational effort for each solution is now proportional to
nected reservoirs, rapid access memory requirements exceed th8"-

capacity of modern computing hardware. Difficulties with IDP or DDDP methods are{l) as with
Various modifications have been performed on the original DP DPSA, the inverted form of the state equati¢ksj. (3)] must be
formulation to mollify thecurse of dimensionalitpf discrete dy- used to avoid interpolation problems over the restricted corridor;

namic programming. These includ@) coarse grid/interpolation ~ (2) the method is highly sensitive to initially assumed storage
techniques(ii) dynamic programming successive approximations trajectoriess® ; and(3) discretization intervalds; must be care-
(DPSA); and (i) incremental dynamic programmingDP) or fully selected to provide accurate solutions at reasonable compu-
discrete differential dynamic programmif@DDP). Coarse grid/ ~ tational expense. One attractive approach is to initially select
interpolation methods attempt to reduce the intensive core large values, which can then be refined as the neighborhood of the
memory and computational requirements of evaluating and stor-optimum trajectory is approached. Unlike DPSA, convergence to
ing the optimal return or cost-to-go functiéi(s,) for all discrete a discrete local optimum, under reasonably mild assumptions, is
combinations of the vecta by using larger discretization inter- ~ guaranteed. As with DPSA, global optima are only attainable for
vals. Solution accuracy is retained by interpolating the function convex problems. The generalized dynamic programming soft-
over the coarser grid structure. This approach was first suggestedvare packag&&SUDP (Labadie 1999 employs a strategy, origi-
by Bellman (1957, and later extended by Johnson et(4993 nally suggested by Nopmongcol and Askél®76), whereby so-
and others to sophisticated interpolation methods using high orderlutions are initiated with the DPSA technique, which rapidly
piecewise polynomial functions. Although these methods alleviate converge to the neighborhood of the optimum. The IDP/DDDP
the dimensionality problem, they fail to vanquish it completely. ~method then either further refines this solution or confirms that it
Bellman and Dreyfu$1962 originally suggested the dynamic s a true(discretg local optimum.
programming successive approximatidB$SA) technique, later Karamouz et al.(1992 applied discrete dynamic program-
generalized by Larsoiil969. DPSA decomposes the multidi- ming to a multiple site reservoir system in the Gunpowder River
mensional problem into a sequence of one-dimensional problemsBasin near Baltimore. A total of 1,500 months of multisite, syn-
by optimizing over one state variable at a time, with all other state thetic streamflow data were input into the discrete DP model for
variables maintained at given current values. This requires that!SO. A linear operating rule structure similar to E) was
the state dynamics equatiofq. (3)] must beinvertedto explic- adopted, with the authors noting that more complex nonlinear
itly solve for releases, as a function of specified beginning and rules have little advantage. To overcome difficulties in the mul-
ending storage levels, s..;. This results in accurate calculation tiple regression analysis when correlation coefficients are low,
of evaporation losses without the need for iterative procedures,successive solutions are bounded to be within a certain percentage
and allows for the development of optimal storage guide curves. of the optimal operating rules found from the previous implicit
Although convergence to a global optimum is guaranteed for stochastic DP run. With each successive iteration, correlation co-
convex problems, convergence to even local optima with DPSA is efficients for the operating rules increase until the process termi-
not assured for nonconvex problems. Collii1977) proposed a nates with consistent operating rules. This process performed well
two-at-a-time DPSA method that adjusts the state variables in for the two-site system considered by the authors, but extensions
overlapping pairs. DPSA and its extensidesg., IDPSA, which  to larger reservoir systems may be difficult.
essentially combines IDP and DPSA by solving over one state at
a time, but confining each state to an incremental coryitias
been applied to many multiple reservoir systems, including the
Central Valley Project{Yeh and Trott 197P and the Tennessee Jacobson and Mayn@970 developed differential dynamic pro-
Valley Authority (Giles and Wunderlich 1981DPSA was applied gramming (DDP) to alleviate dimensionality difficulties in DP
by Shim et al(2002 for real-time flood control operations in the  through use of analytical solutions rather than resorting to dis-
Han River Basin, Korea. An iterative approach involving succes- cretization of the state-space. Murray and Yakowit®79 ex-

Differential Dynamic Programming Models
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tended this approach to more realistic constrained problems, butian function is formulated, but with Lagrange multipliers only
differentiability of the objective function and constraints is still associated with the system dynamics equations and penalty terms
required. DDP can be thought of as an SQP methodology specifi-assigned to the state-space constrdiBts (4)]. Formulations at-
cally designed to exploit the sequential decision structure of prob- tempting to include the state-space constraints with Lagrange
lems such as reservoir system optimization. This implies that multipliers result in complexorner or jump conditionsthat are
computational effort increases approximately linearly with the difficult to evaluate(Grygier and Stedinger 1985

number of stages, making it a feasible strategy for ISO. In addi-  Hiew (1987 compared the performance of the OCT algorithm
tion, Sen and Yakowitz1987) contend that DPSA and IDP meth-  with SLP, SQP, and the GRG nonlinear programming algorithms
ods can only hope for linear rates of convergence, whereas superfor a multireservoir hydropower system. OCT outperformed all of
linear or even quadratic convergence similar to Newton-type the other methods in computational speed, was comparable in

methods can be expected with DDP. solution accuracy, and least sensitive to the initial solution as
Explicit analytical solutions can be obtained for Efjl) if the compared with other methods. Papageordit®88 applied OCT
objective function is quadratic and any inequality constrdings, to multireservoir systems optimization and found computer time

Eqgs.(4)—(6) for the deterministic cagere relaxedDreyfus and requirements increased only linearly with the number of reser-
Law 197%. Under these assumptions, the DP optimal return or voirs.

cost-to-go functiorf(s) is a quadratic function of and is eas- Mizyed et al. (1992 applied OCT to the large 11-reservoir

ily represented analytically rather than numerically as in standard system in the Mahaweli Valley of Sri Lanka. The nonlinear ob-
DP. For the constrained case, Murray and Yakowit@79 pro- jective maximizes firm energy production subject to irrigation de-
pose the solution of a constrained quadratic programni@ig) mand requirements. A 32 year historical record of monthly in-

problem derived by approximating the nonlinear objective func- flows was used for ISO, but with irrigation demands set at mean

tion fy(s,ry) using the first three terms of the Taylor series ex- monthly values. Multiple regression analysis was applied to the

pansion around a current nominal state trajecgyfyat iteration OCT optimization results for determining optimal regression co-

k. Sen and Yakowit21987 suggest replacing the Hessian matrix efficients in_an operating rule similar to E@7). In this case,

of second partial derivatives in the Taylor series expansion with matricesA, B were assumed to be diagortak., no spatial cross

first order approximations based on quasi-Newton updates thatcorrelations considergd although additional regression terms

guarantee convexity of the QP problem. were added for total storage, total inflow, and total irrigation de-
Jones et al(1986 applied the DDP approach to I1SO of the mand. This resulted in reasonable coefficients of determination

Mad River system in northern California. A total of 101 sets of 64 varying from 0.6 to 0.9 for all reservoirs.

years of stochastically generated monthly inflows were input to

the DDP algorithm for minimizing downstream water deficits.

The authors note that a linear programming formulation of the Explicit Stochastic Optimization

same problem required 16 times the computer processing time a

the DDP algorithm. Rather than applying regression analysis to

infer optimal long-term release policies, release rules were condi-

tioned on ranges of current period inflow and storage with ex-

ceedence probabilities of 0.95.

%xplicit stochastic optimizatiofESO is designed to operate di-

rectly on probabilistic descriptions of random streamflow pro-
cessegas well as other random variablesither than determin-

istic hydrologic sequences. This means that optimization is
performed without the presumption of perfect foreknowledge of
future events. In addition, optimal policies are determined without
Discrete-Time Optimal Control Theory the need for inferring operating rules from results of the optimi-

. ) zation(Fig. 5. Unfortunately, ESO techniques as applied to mul-

All of the methods discussed thus far are categorized as math-tjreservoir systems are more computationally challenging than

ematical programming techniques. Optimal control the@¢T) ISO, as recognized early by Roefs and Boti870.
represents a different approach to optimization, but in its discrete-  For ESO, Eq(1) is now formulated as
time form, shares many similarities with mathematical program- T

ming. Modern optimal control theory has its origins with Pontrya- .
gin’s maximum principle(Pontryagin et al. 1962 which was max (?r m|n)cI]E Zl ofi(SroG) e 1@ a(Srea)

originally derived for optimal control of dynamic systems gov- (13)
erned by differential equations under control constraints. For

continuous-time problems, the maximuyor minimum principle
states that a particular decision and state trajectory is optimal
there exists an adjoint trajectory such that the Hamiltonian func-
tion is maximized(or minimized. The Hamiltonian is formed by

appending the system dynamics equations to the original objec- Si ol ded d iabl
tive function usingcostateor adjoint variables, which in math- ince Inflowsg, are row regarded as random variables, stor-

ematical programming parlance, are Lagrange multipliers. This age levels calculated via E(3) are also ra_n_dqm, meaning that
results in a difficulttwo-point boundary valugroblem, particu-  £9S-(4) and(5) must be expressed probabilistically:

where E=statistical expectation operator. Alternative formula-
if tions based on Markov decision theory consider infinite time ho-
rizons where final terms defining future benefits or costs are not
required (Bertsekas 1987 The goal here is to determine long-
term (seasonally stationary optimal operational policies.

larly with inclusion of state-space constraints. Pontryagin et al. PSi t+1=Si t+1.minl = (1—a) (14)
(1962 showed that constraints on the decision variables can be ) _
explicitly maintained in the optimization, although certain con-  P1Sit+1=Sitr1mad=(1-B) (for i=1,.n; t=1,...T)

vexity conditions are required in the discrete-time case. (%)
Extensions of discrete OCT to reservoir system optimization where o« and B=desired levels ofrisk of violating these con-
problems governed by difference equatipns., Eq.(3)] strongly straints, which may vary by season. In this case, unregulated in-
resemble the MOM method of nonlinear programming, but with flows are assumed the dominant source of uncertainty and can be
important differences. Similar to MOM, an augmented Lagrang- represented by appropriate probability distributions. These may
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These constraints essentiatightenthe restrictions on reservoir
releases as the desireédk levelsa, B decrease, thereby encour-

aging more conservative operational strategies. However, these
Stochastic risk constraints areonditionedon the current storage leveds,
Streamflow which are also random variables. ReVelle et(2B69 attempted
Generation to remove this dependency by restricting release policies to a
M%?d Probabilty simplelinear decision rule(LDR)
Long Distribuions lit=Sjt— bit (23)
Historical T
Record where optimization is now performed on the paramelgrs Sev-
eral extensions to the LDR have been developed., Houck
Stochastic et al. 1980; Halliburton and Sirisena 1984; Stedinger 1984t
Optimization |« its extreme simplicity appears to be incompatible with complex
Model reservoir system operations.
Loucks and Dorfmar{1975 showed that chance constrained
Optimal models are overly conservative and generate operational rules that
Operating exceed the prescribed reliability levels. This means that do
Rules not represent the true risk associated with violating storage con-
straints, but can only be regarded as parameters that influence risk
Simulatio Refi t aversion in the solution. True risk must be estimated by perform-
» im n neme ing Monte Carlo analyses on the proposed operational policies.
Model > and Testing Simonovic and Marind1982 developed a reliability program-

ming (RP) model that assigns economic loss estimates to the risk

2 parameters and incorporates them as decision variables in the
E optimization. Difficulties in creating these economic loss esti-
a mates has limited the use of RP methods.
Time
Fig. 5. Explicit stochastic optimizatio(ESO procedure Stochastic Linear Programming Models

The deterministic LP formulation of the reservoir system optimi-
zation problem of Eq91)—(6) assumes that all future inflows and

. . ._other random phenomena are known with certainty. A more real-
be parametric or nonparametric based on frequency analysis.

. . ) .~lstic assumption is that first period decisions can be made with
Other random variables that may be defined include economic - - .
. S - - . certainty, but future decisions and their consequences are random.
parameters in the objective function, demands, and climatological

variables impacting net evaporation and other losses. UnregulatedThe so-calledwo-stageproblem is formulated to minimize total

) . . costs(or maximize net benefitdrom first stage decisions, plus
inflows may be highly correlated spatially and/or temporally. For . o ;

; . the total expected coster net benefitsof future decisions, which
short-term operational problems, inflows may be generated from

. - . . depend on the first stage decisions and future random inflow re-
forecasting models, in which case the primary source of uncer- _,.” . .
. ) alizations(Kall and Wallace 1995 If several scenarios of future
tainty is the forecast error.

streamflow time series have been generated, each with an as-
sumed probability of occurrence, therdaterministic equivalent
Chance-Constrained Programming Models problem can be formulated for each possible inflow sequénice
scenarig. Future reservoir release decisions are specified that
would be made as a consequence of the occurrence of each sce-
nario. Only the first stage decisions are actually implemented,
Fit(X)=P1g;;=<x] (16) since future decisions are not known with certainty. Following

: : : implementation of the first stage decisions, the problem is refor-

Inserting Eq.(3) into Egs. (14) and(15) gives mulated starting with the next period decisions and solved over

The cumulative probability distribution function for independent
unregulated inflows to siteduring periodt is

Psii—Ciri+ it —lit— dit=Sj 4 1 mind = (1— ) 17 the remainder of the operational horizon.
_ L _ The difficulty with this formulation is that an ample number of

PiLsi = Gl Qi =i = die=Si 1 1mad <(1-B) - (18) possible scenarios results in an extremely large-scale linear pro-
where C; represents rowi of the routing matrix anda, gramming problem. This can be reduced through application of
B=acceptablerisks of failure to satisfy the constraints. These Benders decomposition which projects the original large-scale
expressions can be rearranged as problem onto the coupling variables, solves the resulting smaller

subproblems via a dual formulation, and then solvesaster
PLOit<Si t+1,min—Sit T Cirt + iy Hdig s (19) b

problem which coordinates the subproblem solutions until an
P dit=<Sj t+1maxSit T Cir¢ + it + di = (1—8) (20) overall optimum is found for the original problem. Jacobs et al.
(1995 applied stochastic linear programming using Benders de-
composition to the Pacific Gas and Electricity hydropower system
in northern California. Generalized network flow optimization is

and can now be expressed in the following deterministically
equivalent form:

Cirtssit—siﬁlymm—Iit—dit+Fi;l(oc) (21) applied to the multireservoir system, with nonlinearities in the
. power calculations modeled using piecewise linear approxima-
Cire=sit=Si t+1min— lit—dit +Fig (1—B) (22) tions. Decomposition of the large-scale linear programming prob-
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lem into many smaller network flow optimization problems re- Fi(s,qi—1)=max (or min) E [of(s.r¢,q)

sults in significant computational savings over attempts at direct St+1 il -1

solution. Seifi and Hipe{2001) applied two stage stochastic lin-

ear programming with recourse to the Great Lakes Reservoir Sys- +Fea(S1,00] (26)

tem using an interior point method for solving the resulting large- provides optimal storage guidecurves, (s ,q,_;). Labadie
scale LP. (19933 developed optimal storage guide curves for operation of

The explicit stochastic linear programming model originally va|desia Reservoir in the Dominican Republic. Application of the
proposed by Thomas and Watermey2962 discretizes storage  guidecurves produced significant improvements over historical
and releases into given discrete levels, with discrete probabilities gperations, using the same information that would have been
of occurrence of those levels stipulated as the decision variablesayailable to reservoir operators during the historical period. Sev-
in this formulation. Expected benefits of reservoir operations are era| other researchers have successfully applied SDP to single
maximized, with “optimal” probabilities of release levels condi- reservoir problems, such as Stedinger e{584; Huang et al.
tioned on current discrete storage and inflow levels. Unfortu- (1991); and Vasiliadis and Karamou#994). Unfortunately, ex-
nately, this formulation produces what are termed “randomized tensions of SDP to multireservoir systems are more aggravated by
release rules” represented by probabilities of a particular releasestate dimensionality than in the deterministic case, particularly
decision being made rather than actual release guidelines. Alsoywhen spatial correlation of unregulated inflows must be main-
the combinations of discrete joint probabilities that must be cal- tained. One of the few multireservoir applications of SDP was
culated results in an extremely large-scale linear programming conducted by Tejada-Guibert et #.995 on the Trinity-Shasta
model, particularly when applied to multireservoir systems. De- Reservoir system of California.
tailed discussion of this approach and its application to multires-  The sampling stochastic dynamic programming approach of
ervoir systems can be found in Loucks et(@981). Kelman et al(1990 employs a scenario-based method similar to

Extensions of nonlinear programming to the stochastic casestochastic linear programming, but using DP as the solution algo-
for multireservoir systems are rare due to the intense computa-rithm. This method overcomes the complexities of representing
tional requirements. Ahmed and Lans€2001) proposed a multireservoir operations as a Markov decision process and ac-
method based on the parameter iteration method of (B2I9 counting for all spatial and temporal dependencies in the stochas-
involving quadratic approximation of future benefits and param- tic process. Unfortunately, the method fails to alleviate the dimen-
eterization of operating policies for hydropower systems. Compu- sionality problems associated with SDP, and is yet to be applied
tational requirements are alleviated through a Lagrangian decom-to multistate, multireservoir systems. As with all scenario-based
position procedure, but the authors fail to mention the likelihood approaches, questions arise as to the extremely small joint prob-
of existence ofduality gapsin this formulation due to the non-  abilities of occurrence of specific scenarios, particularly over ex-
convexity of the objective function. tended time horizons.

The methods of IDP, DPSA, and DDP have been useful tech-
) niques for solving multireservoir DP problems in the determinis-
Stochastic Dynamic Programming Models tic case. Attempts to extend these methods to stochastic problems
have not in general been successful, mainly since these methods
are highly dependent on knowledge of the system state vector
with certainty. Sherkat et a{1985 attempted to extend DPSA to
the stochastic case by successive adjustment of stationary release
Fi(s)=max (or min) E[af(s,r,00)+Frs1(S.1)] (24) policies one reservoir at a time. Unfortunately, the release policies
" Q generated for a particular reservoir are dependent only on storage
and inflows to that reservoir, thereby ignoring important spatial
Often referred to as a Markov decision process, this formulation gependencies in the reservoir system. Ponnambalam and Adams
assumes that unregulated inflows are temporally uncorrelated, al{1996 attempt to overcome this disadvantage by using two or
though spatial correlation may be included. Extensions to lag-1 three state variables at each iteration, with one of the state vari-
models requires specification of previous period inflows as addi- gbles representing the aggregate storage potential of reservoirs

Stochastic dynamic programmint§DP models attempt to solve
the following DP recursion relation adapted to stochastic prob-
lems

tional state variables: not yet considered. This allows optimal stationary release policies
. to include spatial correlations to at least some extent. A somewhat
Fi(s.G-1)=max (or min) E [af(s.re.q) similar approach is proposed by Archibald et(aP97) whereby a
K /%1 sequence of three-dimensional SDP problems are solved, with
+Fir1(S41,00] (25) states representing the current reservoir, aggregate states of up-

stream reservoirs, and an approximation of the downstream res-

Simplified decision rules need not be assumed, and only prob-ervoirs. Braga et al1991) applied an approach similar to that of
ability distributions are used for deriving optimal policies with no  Sherkat et al(1985 to the multireservoir system of the Compan-
presumption of foreknowledge of future inflow events. Steady- hia Energetica de Sao Paulo, Brazil, but attempted to account for
state feedback control policie$ (s,q;-1) are generated which  spatial correlation of inflows. Unfortunately, this method is inca-
allow reservoir system operators to incorporate hydrologic uncer- pable of generating general operating rules since it determines
tainty into reservoir release decisions. These policies are calcu-specific reservoir release decisions assuming current storage lev-
lated by the value iteration or policy iteration methdétsward els and previous month inflows are known. In addition, only tran-
1960. The latter method is referred to as successive approxima-sition probabilities for the current month are considered in this
tions by Dreyfus and Lawl977), whereby seasonal cycles of the formulation, with optimal benefits of future operations calculated
SDP model are solved until optimal policies become stationary deterministically.
for each season(e.g., calendar month Trezos and Yel{1989 derived an extension of DDP for sto-

The so-called inverted form of the SDP formulation chastic multireservoir problems, but Ouard®91) observed that
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the method converged to suboptimal solutions. Oudiddil) The most serious weaknesses of the LQG model when applied
found the primary deficiency of the method to be the lack of to multireservoir systems are the restriction to quadratic objective
calculation of optimal feedback decision rules. El-Awar et al. functions and relaxation of the control and state-space constraints

(1998 modified the algorithm of Trezos and Yéh989 to in- [i.e., Egs.(4)—(6). Ouarda and Labadie2001) proposed an opti-
clude calculation of optimal multilag feedback policies of the mal control formulation using the aforementioned OCT algorithm
form: subject to chance constraints similar to E(&l) and (22) with
N = — — assigned risk parametess B. This deterministic equivalent for-
re(8,00-1,0t-2) =ASs+Bii-1+ CiG—o+de - (27) mulation results in optimal open loop release and storage trajec-

Instead of directly calculating optimal releask, coefficients in  toriesry, s, (t=1,...T) that are not directly useful for imple-
the matricesA, , B,, C,, and vectord, are optimized. This struc- mentation in the stochgsuc case. quever, they may be va}luable
ture allows incorporation of multilag hydrologic information into  [0F developing quadratic approximations of the nonquadratic ob-
the reservoir system operating policies, with full inclusion of spa- 1€Ctivé function expanded around these trajectories, and for lin-
tial dependencies. Although a nominal optimal state trajectpry ~ €2r1Zing any nonlinear terms in E(B). Optimal linear feedback

is calculated, optimal policies retaining variability of the system decision rulegEq. (28)] can now be developed for this approxi-
state are calculated as quadratic expansions around these nomindiate Problem. Although certainly suboptimal, these policies may
state trajectories. El-Awar et a1998 show that Eq(27) is eas- e useful f(_)r _stoqhastlc control of complex, Iarge-sc_ale reservoir
ily modified to include nonlinear operating rule structures. system optimization problems that would defy solution by other

Hall (1970 originally proposed a method of surmounting the Methods. Shim et al1994 report on successful application of
dimensionality problem of DP for multireservoir systems by ag- this approach to the five-reservoir system in the Han River Basin,
gregating all reservoirs into aguivalent reservoirOptimal poli- South Korea.
cies for the aggregated reservoir are then decomposed into indi-
vidual policies for each reservoir as constrained by the aggregateMultiobjective Optimization Models
solution. Turgeor(1980 extended this concept to large-scale hy-
dropower systems using SDP. Instead of using reservoir storageThe primary objective function of Eq1) can be concisely repre-
as the state variable, a potential energy term is created for treatingsented a$(s,r) where the vectors, r represent reservoir storage
nonlinearities in the power calculations. Valdes et(2892 ap- and releases for each site over all time periods. The problem of
plied this technique to the four-reservoir lower Caroni hydro- Egs.(1)—(6) is now
power system in Venezuela. Disaggregation was performed not
only spatially, but temporally, resulting in daily operational poli- maximize f(sr) (29)
cies from the monthly equivalent reservoir policies. st

The state aggregation approach reached an advanced state witsubject to Eqs(3)—(5), and
Saad et al(1996 by incorporating neural networks as a means of — )
improving the disaggregation process to account for nonlinear fisr)=eg; for j=1..m (30)
dependencies between the system elements. The method waghere the latter constraints can be regarded as additional objec-
successfully applied to finding long-term operational policies tives that are treated parametrically. Thepsilon-constraint
for Hydro-Quebec’s five-reservoir hydropower system on the methodadjusts thes; targets to develop nondominated solutions
La Grande River. The difficulty with state aggregation/ defining a Pareto optimal surface of tradeoffs between the objec-
decomposition methods is the loss of information that occurs dur- tives (Goicoechea et al. 1982These optimal solutions for each
ing the aggregation process. parametric set ok; values may be obtained using any of the
aforementioned optimization algorithms deemed most appropriate
for the particular system in either an ISO or ESO structure. Yeh
and Becker(1982 applied the epsilon constraint method to mul-
Stochastic optimal control theory extends OCT to a solution of tiObjective analysis of the Central Valley Project in California,
problems in the presence of uncertaintyrmise The so-called con5|der|n_g tr_adeoffs between hydropower generation and water
discrete-time linear quadratic Gaussian contt@G) problem is supply objectives. o
one where Eq(1) is quadratic, the system dynamics equations  Alternatively, the weighting methodcommensurates all of
[Eq. (3)] are linear with the inflows represented as independent theseé objectives into a scalar value by assigning subjective

Stochastic Optimal Control Models

Gaussian error terms, and all other constrafines, Egs.(4)—(6)] weights(or relative magnitudes of importance each objective
are relaxed. Under these conditions, optimal linear feedback de- mo
cision rules of the form maximize f(s,r)+ 2 wifi(sr) (31)
sr =1
(=Kt (28)

varying the relative weightsv; also produces a nondominated
can be derived from the matrix Riccati equatidBsyson and Ho solution set for evaluation of tradeoffs. Ko et @992 compared
1975 or continuous dynamic programmin@reyfus and Law these two methods for multiobjective evaluation of the Han River
1977. Determination ofK,, ¢ is accomplished by efficient re- Reservoir system in Korea. The four objectives evaluated were:
cursive calculations that begin with the final period and proceed (1) maximizing total energy productioti2) maximizing firm en-

backwards in time. Theertainty equivalence principl€éBryson ergy; (3) maximizing minimum downstream discharges for water
and Ho 1975 states that although the feedback control law of Eq. supply and water quality maintenance purposes;(@nchaximiz-
(28) is derived by replacing the Gaussian error tefives, hydro- ing the reliability of satisfying downstream water supply require-

logic inflows) with their means, it remains optimal even in the ments. The latter objective was evaluated using chance con-
presence of random errors. More realistic formulations model straints as an ESO problem. It was concluded that the epsilon
streamflows as AR{() or ARIMA processes. constraint method is more efficient since the weighting method
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may develop nonunique solutions for differing sets of weights. Wasimi and Kitanidis(1983, but with inflows modeled as an
For large numbers of objectives, however, the latter method mayAR(1) process and uncertainties in system measurements in-

be preferable. cluded. McLaughlin and Velascd 990 extend this approach to
Selecting the most preferred solution may be accomplished complex hydropower systems in monthly time increments and
using goal programmin@_oganathan and Bhattacharya 1990 apply it to the two-reservoir system in the Caroni River Basin of

compromise programmingZeleny 1982. Eschenbach etal. Venezuela. These models are essentially unconstrained optimiza-
(200D report that preemptive goal programming is employed tion procedures and are not applicable to real-time control prob-
within the RiverWare decision support system and applied to lems with binding constraints on reservoir storages and releases.
TVAs power and reservoir system. Preemptive goal programming McLaughlin and Velascd1990 propose a heuristic procedure
involves setting goals for a primary objective and temporarily whereby the unconstrained optimal solution is simply truncated to
ignoring all other objectives. If this results in numerous nonu- feasible values prior to implementation. Philbrick and Kitanidis
nique solutions, then goal attainment for a secondary objective is(1999 point out that the accuracy of thesertainty equivalence
optimized over this set of nonunique solutions, and so on. This based methods degrades for reservoir systems that increasingly
method only works well if massive nonuniqueness of solutions is deviate from the assumptions associated with the LQG model.
attained at each level. Otherwise, secondary objectives will re- Although they demonstrate the superiority of stochastic dynamic
ceive inadequate consideration in the multiobjective analysis. In programming(SDP) in these cases, they offer no suggestions on
all of these cases, application of ISO is difficult because of the how to overcome the severe computational requirements of SDP
heavy computational load required for obtaining multiobjective when applied to multireservoir systems.
solutions. These methods are usually applied deterministically for  Georgakakos and Mark&l 987 proposed an extended LQG
operational planning purposes. If a finite number of discrete so- (ELQG) algorithm allowing inclusion of binding constraints on
lutions are selected from the Pareto optimal set, they can be fur-system state and release variables. Georgakél@s9a applied
ther ranked using the methods of multicriteria decision analysis E| QG to the three-reservoir hydropower system on the Savannah
(MCDA) such aELECTRE(Goicoechea et al. 1982he analyti-  Rjver, Georgia. Constraints on releases are explicitly maintained,
cal hierarchy proceséAHP) (Saaty 198Q) discrete compromise  jth chance constraints similar to Eq&4) and(25) employed on
programming(Goicoechea et al. 1982or PROMOTHEE(Brans system storage levels. The latter are incorporated into the objec-
et al. 1986. tive function using penalty term®r barrier functionssimilar to

the OCT algorithm. Instead of unconstrained solutions, a series of

constrained quadratic approximate solutions are obtained similar
Real-Time Control with Forecasting to a feasible SQP algorithm with simple bound constraints. A

reduced approximate quadratic problem is projected onto the
Several of the aforementioned optimization models have beenspace of the decision variablése., reservoir releasgsimilar to
adapted for use in real-time control of reservoir systems. Implicit the GRG method, which removes direct consideration of the
and explicit stochastic optimization methods can be applied to state-space constraints. The latter are accounted for by successive
determining long-range guidecurves and policies over weekly, solutions with increasing penalty terms in the objective function.
monthly, or seasonal time increments. Real-time optimal control A key element of ELQG is the expansion of the system state
models are then designedttack these long-term guidelines over representation to include both mean and covariance estimates on
shorter time horizons in hourlfor less or daily time increments. reservoir storage. Although a highly complex algorithm, ELQG is
For this case, flow routing and scheduling of individual hydro- clearly superior to the previous methods for real-time control of
power units is often important, as well as real-time forecasting of reservoir systems where binding constraints exist on the state and
inflows and demand@.e., both water and powgrSeveral authors ~ decision variables. Georgakakos et 81997 further applied
have examined the importance of forecasting in real-time control ELQG to hydropower scheduling in the Lanier-Allatoona-Carters
of reservoir systems, such as Labadie etE81); Mishalani and system in Georgia, and included optimal scheduling and loading
Palmer(1988; and Georgakako& 989h. These studies conclude of turbine units.
that use of forecasting is preferable, even in the presence of er- Several studies have focused on the importance of incorporat-
rors, toreactivecontrol that ignores forecasts. ing realistic flow routing techniques in real-time control of reser-

Wasimi and Kitanidis(1983 applied the discrete-time LQG  voir systems, especially during flood control operations. Unver
model for optimal daily flood control operations in the multires- and Mays(1990 explicitly incorporate the linearized St. Venant
ervoir system of the Des Moines River basin, lowa. The system equations for fully dynamic, unsteady flow routing into a real-
state-space is expanded to include basin rainfall-runoff relation- time optimal control model for reservoir systems. The GRG algo-
ships and Muskingum-type streamflow routing. In this way, mea- rithm is applied directly to reservoir gate controls as the primary
sured rainfall is the input to the model, and the forecast lead-time decision variable, although an augmented Lagrangian function is
is based on natural time lagging and attenuation from the rainfall- used to deal with the state-space constraints. The primary diffi-
runoff and routing processes. Although a fully dynamic closed- culty of this algorithm is the need to calculate complex Jacobian
loop solution is attained over all future time steps, only the cur- matrices defined from partial derivatives of the St. Venant equa-
rent time step open-loop solution is actually implemented. A tions. The optimal control model is incorporated into a real-time
Kalman filter updates estimates of observed system states, and thBood management system for the Highland Lakes system in the
LQG algorithm is again solved beginning with the next time step. Lower Colorado River Basin of Texas. Forecasted inflows are
Bertsekag 1987 has termed this as aspen-loop feedbackro- based on rainfall measurements input into a watershed rainfall-
cess. The quadratic objective function is designed to penalize de-runoff model, similar to the approach of Wasimi and Kitanidis
viations from given ideal system states and releases, which must(1983.
be determined from long-term operational planning studies. Labadie(1993h avoids difficulties in calculating derivatives
The combined control-estimation model developed by Loa- for the St. Venant equations by using setsafting coefficientsn

iciga and Marino(1985 uses a state-space formulation similar to the state equationfi.e., Eq. (3)] that are iteratively updated
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through successive solution of the OCT algorithm with a fully lations of solutions whoseffspring display increasing levels of
dynamic unsteady flow routing model. Excellent convergence fitness (i.e., objective function valugs Michalewicz (1996
characteristics are observed when the combined algorithm is ap-showed that GAs representing decision variables with floating
plied to real-time control of in-system detention storage of storm- point or real number coding are more computationally efficient
water runoff for a portion of the Seattle combined sewer system. than binary coded GAs for problems requiring accurate real num-

Since decision time steps are in 10—15 min intervals, inflow pre-

dictions from an urban rainfall-runoff model are further extrapo-
lated using an ARMA-type forecasting model. An open-loop feed-

ber calculations.
A disadvantage of GAs is the difficulty of explicitly account-
ing for constraintgparticularly inequality constraintsand main-

back procedure is employed, although forecasted inflows aretaining feasible solutions in the population. Constraints are gen-

treated deterministically. Shim et a002 applied the routing
coefficient method for optimal real-time flood control operations
in the Han River Basin, Korea. A geographic information system
processes spatial rainfall data in real-time for input into an artifi-
cial neural networK ANN) for inflow forecasting. The DPSA al-
gorithm provides an efficient optimization procedure for generat-
ing optimal operating policies for the multireservoir system which
are updated hourly.

Hayes et al(1998 expanded the state-space in reservoir sys-

erally indirectly accounted for through the use of penalty terms
incorporated into the fitneséor objective function, although
Michalewicz (1996 describes evolution strategies that allow ex-
plicit consideration of constraints. Unfortunately, these methods
are generally problem specific and must be modified for each new
application. An example is an application of a GA by 1li@001)

to a reservoir system optimization problem where the “iterative
scheme was built directly into the solver in order to ensure that
each generated solution is feasible.” Although [li@902) claims

tem optimization to directly include dynamic routing of water this method to be a “replacement for standard LP solvers used in
quality constituents through impoundments and stream reachespasin allocation models,” it means that each application requires
Eqg. (3) is augmented to include state dynamic equations on tem-recoding and fine tuning of the solver, which diminishes the value
perature and dissolved oxygen. The OCT algorithm is applied t0 of this procedure as a generalized optimization tool.
develop optimal daily reservoir release schedules that maximize  Otero et al.(1999 applied a GA to determining minimum
hydropower revenues, subject to constraints on water quality stormwater detention storage capacities and optimal operating
maintenance. Application to daily scheduling in the Cumberland ryles for managing freshwater runoff into the St. Lucie Estuary
River basin reservoir system in Tennessee indicates that signifi-ajong the southeast coast of Florida. Generalized, piecewise linear
cant improvement in downstream water quality conditions can be reservoir operating rules are used, with the GA directly manipu-
achieved with only modest losses in hydropower benefits. lating the breakpoint locations on the rule curves for each season.
Howard (1994 shows how optimization models can be incor-  The GA s linked with a daily hydrologic simulation model oper-
porated into decision support systems for real-time reservoir con- ating over a 27 year historical period and performs frequency
trol through linkage with supervisory control and data acquisition analysis on mean monthly inflows resulting from the current op-
systems(SCADA), as well as real-time hydrologic and power grating rules. These are compared with the ideal frequency distri-
load forecasting models. With monitoring and telemetry equip- pytions using appropriate goodness-of-fit criteria. The objective
ment now relatively inexpensive, a real-time decision support sys- fynction also includes penalty terms that attempt to minimize re-
tem can support all data management functions, provide real-timeqired storage capacities, as well as discourage violation of vari-
hydrologic and power load forecasts, generate effective displaysg,g operational constraints.
pf current system status, aqd allow operators to both simulate  The significant advantage of the GA is that it can be directly
impacts of proposed operational controls and actually executejinked with hydrologic and water quality simulation models with-
those controls from the interface. out requiring simplifying assumptions in the model or calculation
of derivatives. The GA adjustsopulationsof release rule struc-
tures based on predictions of the impacts of the rules as provided
by the simulation model. Extensive frequency analyses can be
conducted during the system simulation, resulting in discrete
All of the foregoing optimization models are algorithmic proce- probability distributions and various risk measures that can be
dures, meaning that well-structured, convergent solution pro- directly included in the objective function. Measures of system
cesses are applied to quantitative information. In contrast, heuris-resilience(i.e., rate of recovery after occurrence of failuand
tic programming methods are based on rules-of-thumb, vulnerability (i.e., severity of consequences of failuréHash-
experience, or various analogies applied to both quantitative andimoto et al. 1982 which are difficult to explicitly include in al-
qualitative information. Unlike most of the optimization algo- gorithmic procedures, are easily incorporated into a GA-
rithms, heuristic programs cannot guarantee termination to evensimulation model linkage.
local optimal solutions. These methods strive for acceptable or  The key to successful application of the GA in the Otero et al.
satisfyingsolutions, but they are often capable of achieving global (1995 study is the optimization of parameters representing oper-
optimal solutions to problems where traditional algorithmic meth- ating rule structures, rather than actual period-of-record releases
ods would fail to converge oget stuckin local optima. over each time step. Oliveira and Lougi®97 propose a similar
Genetic algorithmgGA) are categorized under the general approach, which is applied to defining multiple reservoir operat-
heading of evolutionary programmin(&P) in that they perform ing policies using system rule curves and individual storage target
optimization through a process analogous to “the mechanics of balancing functions. Sharif and Wardld2000 propose applica-
natural selection and natural genetics” in the biological sciences tion of a GA to direct optimization of period-of-record releases as
(Goldberg 1988 Three heuristic processes of reproduction, an alternative to deterministic optimization approaches such as
crossover, and mutation are applied probabilistically to discrete DDDP. However, the advantage of a GA lies not in its computa-
decision variables that are coded into binary strings. Rather thantional efficiency, but rather the robust ability to solve highly non-
generating progressions of single solutions, as with all of the pre- linear, nonconvex problems. The expensive computational re-
ceding optimization algorithms, a GA produces grouppopu- quirements of a GA make it ill-suited for ISO or ESO applied to

Heuristic Programming Models
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multireservoir systems unless operating policies can be param-killer Lake, OKl. It is likely that the FRB approach could be
eterized in some way. extended to multireservoir systems for inferring operating rules

Cai et al. (2001 describe an application of GAs to solving from training sets produced by ISO.
large-scale nonlinear water management problems over multiple Fuzzy sets have also been integrated into optimization algo-
periods, such as for ISO. The GA only optimizes over a limited rithms as a means of representing vagueness and uncertainty in
number of complicating orcoupling variables such that when  system characteristics and objectives. Fontane 1887 used
fixed, allow decomposition of the original problem into many linguistically described reservoir objectives from surveys of deci-
small linear programming problems. Bouchart and Hampart- sion makers to develop fuzzy membership functions on diverse
zoumian(1999 applied a GA to identify appropriate inflow se- objectives such as water supply, flood control, and recreation.
guences for training of a reinforcement learnii®y.) model. Re- These were incorporated into an implicit stochastic dynamic pro-
inforcement learning provides strategies for solving problems gramming model for evaluating degrees of satisfaction and expec-
similar to large-scale stochastic dynamic programming problems tations of success in achieving these objectives. Luhandjula and
without the need for explicit knowledge of the state transition Gupta (1996 proposed the integration of fuzzy sets into ESO
probability function(Kaelbling et al. 199% models as a means of appropriately treating uncertainty in com-

Although not classified as an optimization technique per se, plex systems.
artificial neural networksANN) may be useful as an alternative
to multiple regression analysis for determining optimal rules from .

ISO. An ANN is a “computational paradigm inspired by the par- Conclusions

allelism of the brain.” Artificial neurons or nodes are simple pro-
cessing units that produce outputs as nonlinear functions of
weighted sums of the inputs to that node. The ANN is particularly
valuable in performing classification and pattern recognition func-
tions for processes governed by complex nonlinear interrelation-
ships. Raman and Chandramo(ll®96 used an ANN for infer-
ring optimal release rules conditioned on initial storage, inflows,
and demands. Results of a deterministic DP model for the Aliyar
reservoir in Tamil Nadu, India for 20 years of bimonthly data
serve as draining setfor the ANN. The training of an ANN is an
optimization process, usually by a gradient-typeack-
propagation procedure, which determines the values of the
weights on all interconnections that best explain the input-output
relationship. Chandramouli and Ramé001) extended this ap-
proach to developing operating rules for multireservoir systems.

Raman and Chandramou(il996 claim that simulation of
rules obtained from the trained ANN outperforms rules produced
by linear regression analysis, as well as optimal feedback laws
obtained from explicit stochastic optimization using SDP. Other
uses of ANN may be in representing the DP optimal return or
cost-to-go functionF(s,q;_1) with fewer sampling points,
thereby creating the potential for solving high dimensional sto-
chastic dynamic programming problems for reservoir system op-
timization. This is the basis for neurodynamic programming, as
proposed by Bertsekas and Tsitsik|k096.

An alternative approach to inferring operating rules from his-
torical operations or ISO of reservoir systems is through use of
fuzzy rule-basedFRB) modeling. Fuzzy sets provide a nonfre-
guentist approach to dealing with uncertainty and vagueness tha
are not bound by the laws of probability measure theory. Fuzzy
sets provide a means of translating linguistic descriptors into a
usable numerical form. Fuzzy sets define degrees of truth of
membership in a set by means of fuzzy membership functions.

Shrestha et al(1996 propose that inputs to reservoir operat-
ing policies(e.g., initial storage, inflows, and demaipdas well
as outputs(e.g., historical release policies or results from JSO
can be described by fuzzy relation®egrees of fulfillmenbf
these fuzzy inputs are combined to produce fuzzy output relations
which can bedefuzzifiedo produce arisp output(e.g., reservoir
release decisignSimilar to an ANN, results of ISO of a reservoir
system produce #@aining setwhich the fuzzy rule-based system
attempts to analyze using various methods such as the weighteqqeferences
counting algorithm or least-squares methods for adjusting the
fuzzy numbers. Shrestha et #1996 report excellent results in - Ahmed, I., and Lansey, K2001). “Optimal operation of multi-reservoir
using an FRB system to replicate historical operations for Ten-  systems under uncertaintyProc., World Water and Environmental

There are a few areas of application of optimization models with
a richer or more diverse history than in reservoir system optimi-
zation. Although opportunities for real-world applications are
enormous, actual implementations remain limited or have not
been sustained. Shepherd and Ortolét®96 report on personal
communications with system operators stating that they “don’t
like being told what to do...” or a preference to make decisions
“in his own way.” Many examples of the lack of success in
implementation of reservoir system optimization models occur in
public works agencies with vague performance objectives. Often,
in these cases, the avoidance of difficulties or perceived system
failure are the dominant goals, rather than improving efficiency or
reducing costs. This is not necessarily true for many private or
quasi-public water and power systems where strong financial and
revenue-based incentives exist for deployment of optimization
methods. Opportunities for implementation of reservoir system
optimization models may grow as the public demands greater
performance-based accountability in water management agencies.
Reservoir system operators may increasingly rely on sophisticated
computer modeling tools to better respond to new environmental
and ecological constraints for which they have little experience to
draw on.

This writer is convinced that the keys to success in implemen-
tation of reservoir system optimization models dfi8:improving
the levels of trust by more interactive involvement of decision
makers in system developmeri) better “packaging” of these
systems, as suggested by GoultE®92; and(3) improved link-
age with simulation models which operators more readily accept.
FFor the latter, increased application of heuristic programming
methods is particularly important, which many system analysts
have been slow to adopt because they lack a strong scientific or
theoretical foundation. The ability of genetic algorithms to be
linked directly with trusted simulation models is a great advan-
tage. In addition, past difficulties in inferring operating policies
from implicit stochastic optimization models may be alleviated
through applications of fuzzy rule-based systems and neural net-
works. The computational challenges of explicit stochastic opti-
mization may also be overcome through judicious application of
these heuristic techniques.
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