HOW DESIGN, MANAGEMENT AND POLICY AFFECT THE PERFORMANCE OF IRRIGATION PROJECTS

EMERGING MODERNIZATION PROCEDURES
AND DESIGN STANDARDS

Hervé Plusquelle c

FAO 2002 Bangkok, Thailand

CONTENTS

PREFACE	1
PART I: AN HISTORICAL PERSPECTIVE	13
I. THE CAUSES OF POOR PERFORMANCE OF IRRIGATION	
PROJECTS: AN UNFINISHLO DEBATE	13
Perceived deficiencies in technical design and management	14
Administrative and behavioural reasons	17
Criticism of engineers	17
Criticism of development banks and donor agencies	19
The slow recognition of design as a main reason of the poor	
performance of irrigation systems	21
The dawn of a new approach to irrigation design and management	24
II. PERFORMANCE OF IRRIGATION SYSTEMS	27
III. A REVIEW OF THE ROLE OF INTERNATIONAL	
ORGANIZATIONS	31
1. The World Bank	31
The lack of an irrigation policy paper	31
Pressure to lend	32
Use of overoptimistic assumptions during design and appraisal	34
2. The Asian Development Bank	34
3. The FAO Cooperative Programme guidelines	35
Identification and preparation of irrigation projects	35
Updating of the 1984 irrigation guidelines (1996)	37
IV. TECHNICAL VERSUS MANAGERIAL CHANGES	40
V. TECHNOLOGY VERSUS INSTITUTIONAL REFORMS: USER	
PARTICIPATION	45
From social to business associations	45
Impact of irrigation management transfer on the performance of	
irrigation projects	49
VI. IMPROVED IRRIGATION IN THE CONTEXT OF WATER	
PESOURCE MANAGEMENT	52

PART II: CHANGING APPROACHES TO THE DESIGN OF IRRIGATION PROJECTS	55
VII. IRRIGATION DESIGN CONCEPTS IN SELECTED COUNTRIES	55
A. Traditional irrigation systems	55
B. Country experience	56
1. India	56
2. Pakistan	58
3. Egypt: the Nile valley system	62
4. Sudan: the Gezira project	63
5. China	66
6. North African countries	68
7. Iran	70
8. Malaysia	72
9. Indonesia	73
10. United States of America	74
C. Use of Bureau of Reclamation design standards in developing	
countries	75
D. Cross country transfer of technology	78
India: transfer of rotational distribution from northwest India	
to the southern states	79
Transfer of rotational irrigation from India to Thailand and Nepa	180
Indonesia: transfer of technology to user-managed systems	81
E. Conclusions	82
VIII. THE FORCES OF CHANGE	87
Response from farmers	89
Response from technology	90
Response from agricultural research	91
Response from the governments	92
IX. THE EXPLOSIVE EXPLOITATION OF GROUNDWATER	
	92
X. THE PLANNING PROCESS: A GLOBAL GAME PLAN	95
Definition of modern design	95
Principles of modern design	96

Proper objective	97
Water delivery	98
Configuration	99
Water control strategy	99
Guiding principles for selecting a control strategy and equipment	103
Modernization of existing schemes	109
Simulation of canal response for different scenarios	109
Centralized automatic control systems	110
XI. PARAMETERS INFLUENCING THE PLANNING AND DESIGN	Ī
OF IRRIGATION PROJECTS	111
Water resources	112
Groundwater resources	112
Silt load	114
Rainfall	115
Soil conditions	115
Crop diversification	116
Existing infrastructure	117
Land tenure and consolidation	118
Management and technical capability: the field reality	120
Economics and maintenance costs	120
Institutional setup	121
Operational capabilities of irrigation agencies and user associations	122
Pricing and water allocation strategy	123
Capacity of the construction industry	123
XII. THE CHALLENGE OF MODERNIZATION: OPTIONS	
AND PROCEDURES	124
Infrastructure versus management inputs	124
Stepwise versus full-fledged modernization	125
The role of water users' associations in the modernization process	127
Financing of rehabilitation programmes: a few examples	127
Specific design issues	131
Hierarchy of canals	131
Control of seepage losses	133
XIII. A PROCESS FOR REVISING DESIGN PROCEDURES	
AND STANDARDS	135
Assess needs for change: the use of internal indicators	135
Development of new design procedures	138
Revision of design standards	139

	tegies for dissemination	140
POLICIES	ISION: THE NEED FOR COUNTRY IRRIGATION	141
REFERENCE	S	145
ANNIEWEC		149
ANNEXES Annex 1:	Planning a large irrigation project in the 1950-70 period	
Annex 1: Annex 2:	Abstracts from the FAO Guidelines for Planning	177
Annex 2.	Irrigation and Drainage Investment Projects	151
Annex 3:	Conventional terms of reference for consulting services	153
Annex 4:	Irrigation policy: modernization of water resources	100
Annex 4.	in Brazil	154
FIGURES		
Figure 1:	A multi-tier user organization/agency of a surface	
C	irrigation system	49
Figure 2:	Alternative configurations of canal automated systems	101
Figure 3:	Complexity of different control strategies at design,	
	construction and operation stages	103
Figure 4:	Options for ease of operation and higher levels of servic	e 105
Figure 5:	Flow rate fluctuations through weir and orifice control	
	structures	107
Figure 6:	Combination of check and turnout structures	108
Figure 7:	Land consolidation in an interventionist agricultural	
	economy	119
Figure 8:	A land consolidation model in a liberal agricultural	110
E: 0	economy	119
Figure 9:	An irrigation project with a well-established hierarchy	131
F: 10.	of canals	131
Figure 10:	A typical irrigation system with a loose hierarchy	132
Eigura II.	of canals and a high number of direct outlets Typical configuration of an irrigation system in Mid	132
rigule 11.	and South China	133
PHOTOGRAI	PHS'	
Photo 1: D	ominican Republic	I
	iet Nam, Dau Tieng Project	I

^{*}All photographs by Hervé Plusquellec unless specified otherwise.

Photo 3: Viet Nam, Dau Tieng Project	H
Photo 4: Pakistan, SWABI Project in North West Frontier Province	: II
Photo 5: Argentina	H
Photo 6: Nepal, Sunsari-Morang Project	III
Photo 7: Iran, Guilan Project	Ш
Photo 8: Iran, Guilan Project	Ш
Photo 9: Malaysia, Kemubu Project	IV
Photo 10: India, Majalgaon Project	ΙV
Photo 11: Iran, Guilan Project	IV
Photo 12: France	V
Photo 13: Philippines	V
Photo 14: Japan, farm layout before land consolidation	V
Photo 15: Japan, farm layout after land consolidation	V
Photo 16: Pakistan	V]
Photo 17: USA, Salt River Project, SCADA	V)
Photo 18: Spain, Cabral Project, SCADA	VI
Photo 19: Morocco, Haouz Project (Société du Canal de Provence)	VI
Photo 20: Mexico, Rio Fuerte Project	VII
Cover: Vietnam, Dau Tieng Project	
Vietnam, Dau Tieng Project (Arjen During)	
Internal Cover: Alberta, Canada (Irrigation Secretariat, Alberta	
Agriculture Food and Rural Development)	