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Abstract. A modern real time flood forecasting system requires its mathematical model(s) to handle
highly complex rainfall runoff processes. Uncertainty in real time flood forecasting will involve a
variety of components such as measurement noise from telemetry systems, inadequacy of the mod-
els, insufficiency of catchment conditions, etc. Probabilistic forecasting is becoming more and more
important in this field. This article describes a novel attempt to use a Fuzzy Logic approach for river
flow modelling based on fuzzy decision trees. These trees are learnt from data using the MA-ID3
algorithm. This is an extension of Quinlan’s ID3 and is based on mass assignments. MA-ID3 allows
for the incorporation of fuzzy attribute and class values into decision trees aiding generalisation and
providing a framework for representing linguistic rules. The article showed that with only five fuzzy
labels, the FDT model performed reasonably well and a comparison with a Neural Network model
(Back Propagation) was carried out. Furthermore, the FDT model indicated that the rainfall values of
four or five days before the prediction time are regarded as more informative to the prediction than
the more recent ones. Although its performance is not as good as the neural network model in the
test case, its glass box nature could provide some useful insight about the hydrological processes.
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1. Introduction

The most influential publication in the area of fuzzy set theory appeared in 1965
(Zadeh, 1965) and the development of this theory for almost 20 yr remained in the
academic realm. Over the last two decades, however, a wide range of applications
have emerged. From a methodological point of view, the application areas for
Fuzzy Technology (FT) can be classified into the following categories (Zimmer-
mann, 1996):

(1) Algorithmic Applications, e.g.
Fuzzy Mathematical Programming; Fuzzy Planning Methods (CPM,
Graphs);
Fuzzy Petri Nets; Fuzzy Clustering, etc.
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(2) Information Processing
Fuzzy Data Bank System; Fuzzy Query Languages; Fuzzy
Languages, etc.

(3) Knowledge Based Applications
Expert Systems; Fuzzy Control; Knowledge Based Diagnosis, etc.

(4) Hybrid Application Areas
Fuzzy Data Analysis; Fuzzy Supervisory Control, etc.

Nowadays, the combination of FT with neural nets and genetic algorithms is rap-
idly increasing giving rise to the paradigm of soft computing. Attempts have been
made in the past to introduce this new technology into water engineering. It has
been found that modelling water movement in the unsaturated soil matrix was
suitable for adopting fuzzy rules and in comparison with the numerical solution
from the Richards equation, the fuzzy model performed quite well (Bardossy et
al., 1995). Fuzzy algorithms have also been applied in urban drainage system
modelling that was able to incorporate the GIS and remotely sensed thermal map
to estimate the runoff potential (Campana, et al., 1995). Bardossy (1996) tried to
use fuzzy rules to model infiltration, surface runoff and unsaturated flow. It was
found that fuzzy systems provide a robust tool which can handle non-linearities,
without requiring a prescribed functional structure. Furthermore fuzzy rule-based
models can easily be coupled; for example, a model for flow in porous media may
be coupled with a bacteriological growth model. They are capable of combining
physical laws, expert knowledge and measurement data. Efforts were made to
combine fuzzy theory with Genetic Algorithms to simulate the infiltration process
and it was found that more accurate simulations could be achieved than with the
standard Newton-Raphson method (Zeigler, et al., 1996). In flood control, Cheng
(1999) has proposed a fuzzy optimal model for the flood control system of the
upper and middle reaches of the Yangtze River and found the model effective and
flexible when it was validated with three typical historical floods. Panigrahi and
Mujumdar (2000) developed a fuzzy rule based model for the operation of a single
purpose reservoir. The model operates on an ‘if – then’ principle, where the ‘if’ is
a vector of fuzzy premises and the ‘then’ is a vector of fuzzy consequences.

It is clear that fuzzy technology is playing a more important role in modern
day water engineering. One area deserving further investigation is real time flood
forecasting. Stuber and Gemmar (1997) proposed an approach for data analysis
and forecasting with neural fuzzy systems. In their article, two different system
approaches are discussed: (a) a neural network for supervised learning of the func-
tional behaviour of time series data and its approximation, and (b) a fuzzy system
for modelling of the system behaviour with possibilities to exploit expert inform-
ation and for systematic optimisation. Recently, See and Openshaw (1999) also
combined a fuzzy logic model with neural networks. They split the forecasting data
set into subsets before training with a series of neural networks. These networks
were then recombined via a rule-based fuzzy logic model that has been optimized
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using a genetic algorithm. The overall results indicate that this methodology may
provide a good performance, low-cost solution, which may be readily integrated
into existing operational flood forecasting and warning systems.

It is known that a modern real time flood forecasting system demands that its
mathematical model(s) handle highly complex rainfall runoff processes. Uncer-
tainty in real time flood forecasting will involve a variety of components such
as measurement noise from telemetry systems, inadequacy of the models, insuf-
ficiency of catchment conditions, etc. Fuzzy technology has a great potential to
tackle the uncertainty problems in this field. This article will adopt a novel ap-
proach using a fuzzy machine learning algorithm MA-ID3 implemented in the
logic programming language FRIL (Baldwin et al., 1995).

2. Fuzziness in Hydrological Systems

Hydrological systems are dynamic and fuzzy. The contributing factors are dif-
ficult to evaluate and measure. Traditionally, rainfall records were obtained by
raingauges that can produce up to 10% measurement errors due to a variety of
causes, such as wind, splashing, trees, surrounding areas, etc. (Nespor and Sevruk,
1999). Habib et al. (2001) found that the commonly used tipping bucket raingauges
suffer from significant errors if the measurements are based on time scales less
than 10 to 15 min. In addition, raingauges also suffered from malfunctioning of the
tipping-bucket frequently caused by biological and mechanical fouling, and human
interference during a thirty major storms experiment carried out in Goodwin Creek,
a small research watershed in northern Mississippi (Steiner et al., 1999). The catch-
ment average rainfall is usually calculated by the Thiessen polygon method, or
more complicated mathematical processes (such as polynomial/Spline surface fit-
ting or Kriging, etc). In real time flood forecasting situations, the telemetry rain-
gauge network is usually quite sparse (e.g., about 1 in 200 km2 in SW England, Han
et al., 2000) and the derived catchment average rainfall is an uncertain number due
to the spatial sampling problems (Cluckie and Han, 2000).

To overcome the spatial sampling problems caused by sparse raingauge net-
works, more gauges are required but in reality, for economic constraints, it is
impractical to set up a dense raingauge network for operational real time flood
forecasting purposes. One solution is to use remote sensing technology such as
weather radars to provide high resolution rainfall measurements in space and in
time. Some modern hydrological radars can achieve very high definition rainfall
measurements up to 250 by 250 m in space over a large area (50 to 76 km in radius)
(Han et al., 2000). However, radar measurement of rainfall is far from perfect and
could still suffer from a variety of detrimental factors, such as variations in the
relationship between back scattered energy and rainfall rate, effects of variation in
precipitation with height, anomalous propagation of the beam. For example, WSR-
88D radars used by the US National Weather Service could underestimate rainfall
by about 25% in stratiform rain and overestimate it by about 33% in thunderstorm
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rain. Yet it is commonly observed that some WSR-88D radars systematically un-
derestimate rainfall by a factor of 2 or more in stratiform rain (Ulbrich and Lee,
1999). On the other hand, stream flow records are usually derived from hydraulic
measuring structures, such as weirs. These flow records are more accurate than
rainfall measurements, however, discrepancies still exist and uncertainties in the
records are inevitable (Herschy, 1999).

Traditional hydrological modelling tends to treat the input and output as def-
inite values and lacks effective means to tackle the uncertainties in the rainfall
and flow measurements. Nowadays more and more attention has been focused on
uncertainty issues in real time flood forecasting. Fuzzy technology could take a
more active role in this field and in this research, especially when combined with
machine learning algorithms. In the following we show how a fuzzy decision tree
induction algorithm MA-ID3 can be used to learn fuzzy IF-THEN rules which
enhance the performance of operational real time flood forecasting systems (Han,
et al., 2000). This algorithm has been implemented in the language FRIL that has
built in capabilities for handling both fuzzy and probabilistic uncertainty.

3. The Catchment

The data used for this article were collected in a region called Bird Creek in the
U.S.A. The data formed part of a real-time hydrological model intercomparison
exercise conducted in Vancouver, Canada in 1987 and reported by WMO (WMO,
1992). The data set is divided into two parts: a calibration (training) period and a
verification (testing) period. The daily rainfall values were derived from 12 rain
gauges situated in/near the catchment area. The river flow values were obtained
from a continuous stage recorder. The period used for model calibration spanned
some eight years from October 1955 to September 1963, and the verification period
ranged from November 1972 to November 1974. During the calibration period
the discharge at the basin outlet ranged from 0 to 2540 m3 s−1 and rainfall up to
153.8 mm day−1. The highest recorded discharge during the verification period was
1506 m3 s−1 (Hajjam, 1997).

The bird Creek catchment covers an area of 2344 km2 and is located in Ok-
lahoma close to the northern state border with Kansas. The outlet of the basin
is near Sperry about ten kilometers north of Tulsa. The catchment is relatively
low lying with altitudes ranging from 175 m up to 390 m above the mean sea
level. There are no mountains or large water surfaces to influence local climatic
conditions. Some twenty percent of the catchment surface is covered by the forest
while the main vegetative cover is grassland. The storage capacity of the soil is
very high (Georgakakos and Smith, 1990). The river basin and the stream network
are shown in Figure 1.

The catchment receives significant rainfall in most years, and the catchment can
be classified as humid although extended periods with very low rainfall can occur.
Well defined rainy seasons occur in the spring and summer with rain in the form of
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Figure 1. The Bird Creek drainage basin (Source WNO, 1992).

showers and thundershowers of convective origin. Snowfall remains on the ground
for only a very short time. From the latter part of July to September air temper-
atures are high (38 ◦C is common) and as a result significant evapotranspiration
occurs during this time. At the same time, relative humidity is low accompanied
and southerly breezes are common (Georgakakos et al., 1988).

4. Fuzzy Modelling

In this work the semantics for fuzzy membership functions are based on the voting
model (Lawry, 1998). The membership value of a value x in a fuzzy set representing
a term w is then taken to be the proportion of voters from some population who
accept w as a suitable label for x. In practice voting experiments are not actually
carried out and instead the membership functions are predefined and the voting
model is used to justify the operations used on fuzzy sets. This framework can then
be used to learn and represent fuzzy rules for classifying the data of both rainfall
and river flow into representing fuzzy sets (Figure 2). For example, rainfall values
are split up into five overlapping fuzzy sets described by labels such as: very low,
low, medium, high and very high. Both the number of fuzzy sets used and the
degree of overlap can be varied noting that an increase generally affects the level
of interpolation (usually increasing complexity). The fuzzy sets used take the shape
of trapezoid but can be formatted to preference.
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The modelling process is based on the fuzzy ID3 algorithm as proposed by
Baldwin et al. (1998). This process provides a method which generates a decision
tree based on conditional probabilities. The conditional probabilities are relative
to each particular branch of the decision trees, which are linked through IF-THEN
type statements: i.e.

IF the rainfall today is medium

AND IF the rainfall yesterday was very high

THEN it is highly likely that the river flow today will be high

The above expression may be obtained from a branch of the decision tree with a
conditional probability such as:

Pr (River flow today high| Rainfall today medium
AND Rainfall yesterday very high) = 0.95

Essentially both the river flow output and the conditional probabilities are fuzzy
concepts where a probability of 0.95 has a high membership value in the ‘highly
likely’ fuzzy set.

Since the universe of the predicted output (river flow) is fuzzy, it is necessary
to aggregate the results based on the relative conditional probabilities since any
one output may fall in a number or even all of the fuzzy set. This aspect is also a
component of the approach adopted, which offers to weigh values by proportioning
the probability that the particular output is chosen multiplied by the probability
that the respective fuzzy set labels are appropriate (Baldwin et al., 1998). For the
prediction to produce an output, a process of ‘defuzzification’ is necessary. This
is done simply by weighting the river flow values according to their respective
probabilities and the average fuzzy set value for each distinctive fuzzy set (i.e. the
centroidal value which best suits the linguistic description).

In this research, the MA-ID3 algorithm developed by Baldwin et al. (1998) is
adopted to generate a set of classification rules from the data, based on Shannon’s
measure of entropy, in the form of a traditional decision tree for a collection of
data related to a number of classes. Features are selected on the basis of maxim-
ising the expected information gain of evaluating them as quantified by Shannon’s
measure. The decision tree is a combination of nodes (corresponding to features)
and branches (corresponding to particular feature values). The prime aim of the
MA-ID3 algorithm is to construct a tree giving the most concise rules for check-
ing features for classification. An iterative method is then performed ranking the
features according to their effectiveness in partitioning the set of defined classes.

Therefore, the fuzzy sets for rainfall and stream flow are:
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For rainfall: (over a domain from 0 to 50)

µvery low = [10:1, 16.5:0], µlow = [3.5:0,10:1,20:1,26.5:0], µmedium = [13.5:0, 20:1,
30:1, 36.5:0], µhigh = [23.5:0,30:1, 40:1, 46.5:0], µvery high = [33.5:0, 40:1].

For streamflow: (over a domain from 0 to 6500)

µvery low = [73:1, 105.15:0], µlow = [0:0, 73:1, 137.3:1, 189.05:0], µmedium =
, µhigh [189.05:0, 240.8:1, 919.7:1, 6500:0], µvery high = [580.25:0, 919.7:1].

Note that here we are using the Fril notation for piecewise linear functions where
[xi : y1, . . ., xn : yn] denotes a function F (x) such that

∀x ∈ [xi, xi+1]F(x) = (yi − yi+1/xi − xi+1)x + (xiyi+1 − yixi+1/xi − xi+1)

for i = 1, . . ., n .

The rainfall runoff data records are divided into two parts: a model calibration
data set (700 days) and a model validation data set (150 days). Initial attempts
were made using the ‘exponential time steps’ method. The calibration data set are
classified through five fuzzy sets at a degree of overlap of 0.65. A decision tree is
created according to the fuzzy set classification and the conditional probability of
the stream flow output. Examing the full decision tree, it is noticeable that points
tend to cluster in the very low fuzzy sets which is due to the high occurrence
of zero values of rainfall. The problem is that zero is not providing the system
with any information to form a basis and thus the system tends to bias towards
zero. Figure 3 displays the actual results during the model calibration process with
a 13.28% difference between the simulated flow and measured flow. Despite the
uniform displacement of simulated flow, the model is able to map the actual peaks
reasonably well. A correction to this displacement is made as shown in Figure 4.

For real time flood forecasting systems, on-line measured flow records are usu-
ally available to the modelling process and it would be useful if the model is
able to absorb the newly measured data records. Therefore, a feedback term is
incorporated to allow the system to see the actual result for stream flow at time
t (after the prediction is made) and use this actual value to predict the stream
flow at t + 1 and so on. The improvements by introducing the feedback term are
very obviously illustrated by Figure 5 during the calibration process with a much
reduced error between the measured flow and simulated flow (down to 4.55%). The
model validation results are presented in Figure 5 and the fuzzy logic model is able
to simulate the flood peaks quite well.

The simulation results are summarised in Table 1. Utilising the MA-ID3 al-
gorithm, the system selects the four rainfall values found most significant on build-
ing a powerful decision tree. Hydrologically it is noted that when the program
selects the four most influential inputs from ten preceding rainfall values, the model
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Table I. Statistical comparison of the three main approaches

Bird Creek data Format 1 Format 2

Training: 700 day Exponential time steps Incorporation of a

Testing: 150 days feedback term

Approximate prediction 1 day 1 day

time interval

Percentage error of output 12.3% 4.55%

universe on training

Percentage error of output 13.8% 7.51%

universe on testing

regards the values of four, five or six days ago as providing more information than
the more recent rainfall values. This feature illustrates the glass box nature of fuzzy
logic methods where the model provides feedback on what method is undertaken
in classification. This information can thus highlight the values relevant to an ideal
training set to optimise further the accuracy of prediction. The above comparison
shows that the introduction of a feedback function does increase the accuracy but
further work is needed to increase the warning lead time beyond a one day period.
One solution may be to incorporate a feedback term for stream flow two or three
days before rather than the day before. The extra stream flow information gives
the system the classification attributes it needs to cope with an abundance of zero
rainfall data.

Comparison with traditional Neural Network model is made using 230 days test
data as shown in Figure 6. The NN model was built using a basic Back Propagation
method with 10 rainfall inputs and 10 flow inputs. There were 20 nodes in the
hidden layer. This structure was selected after a selection process using the training
data. A major flood event with several peaks was included in the test data set. The
highest peak was beyond any peaks seen by NN model and Fuzzy Decision Trees
model during their training process. Overall, NN model had a superior perform-
ance although both models underestimated the highest peaks and overestimated
small peaks. It is likely that more information is required to improve the modelling
accuracy in addition to just rainfall and river flow data. Fuzzy Decision Trees model
may be better suited when spatial rainfall data are introduced.

As mentioned above, the modelling system is coded in FRIL. FRIL is a logic
programming language in which a program takes the form of a set of first-order
predicate logic statements and rules (Baldwin et al., 1995). More specifically, as
with all such languages the rules are a restricted type of logic formula called Horn
clauses. Limiting the language in this way means that the problem of deciding
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whether a certain hypothesis follows from a particular program can be made tract-
able. Unlike other logic programming languages such as PROLOG, FRIL has a list
based syntax which provides a very flexible knowledge representation framework.
In addition, FRIL has built in capabilities for handling uncertainty which include
mechanisms for representing and manipulating fuzzy sets as well as a calculus for
inference based on interval probabilities.

5. Conclusions

This article explored the possibility of using fuzzy technology to model river flows
for real time flood forecasting. There are a variety of uncertainties in rainfall and
stream flow measurements, in spite of the advances of modern telemetry techno-
logy, and it is difficulty to treat these uncertainties using traditional deterministic
methods. In this article we have shown that fuzzy decision trees model has its
potential usage in flood forecasting. With only five fuzzy labels, the FDT model
performed reasonably well. The FDT model indicated that the rainfall values of
four or five days before the prediction time are regarded as more informative to
the prediction than the more recent ones. Although its performance is not as good
as the neural network model in test case, its glass box nature could provide some
useful insight about the hydrological processes. On the other hand, NN models are
black box models which lack the see-through ability. However, results from both
NN and FDT models illustrated a common problem in hydrological modelling, i.e.,
lack of hydrological measurements, such as spatial rainfall, soil moisture, etc. It is
unlikely that model prediction accuracy for both FDT and NN could be further
improved significantly without extra hydrological information.
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