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Abstract:

In this paper we explore the optimum assimilation of high-resolution data into numerical models using the example
of topographic data provision for flood inundation simulation. First, we explore problems with current assimilation
methods in which numerical grids are generated independent of topography. These include possible loss of significant
length scales of topographic information, poor representation of the original surface and data redundancy. These are
resolved through the development of a processing chain consisting of: (i) assessment of significant length scales of
variation in the input data sets; (ii) determination of significant points within the data set; (iii) translation of these into
a conforming model discretization that preserves solution quality for a given numerical solver; and (iv) incorporation
of otherwise redundant sub-grid data into the model in a computationally efficient manner. This processing chain is
used to develop an optimal finite element discretization for a 12 km reach of the River Stour in Dorset, UK, for
which a high-resolution topographic data set derived from airborne laser altimetry (LiDAR) was available. For this
reach, three simulations of a 1 in 4 year flood event were conducted: a control simulation with a mesh developed
independent of topography, a simulation with a topographically optimum mesh, and a further simulation with the
topographically optimum mesh incorporating the sub-grid topographic data within a correction algorithm for dynamic
wetting and drying in fixed grid models. The topographically optimum model is shown to represent better the ‘raw’
topographic data set and that differences between this surface and the control are hydraulically significant. Incorporation
of sub-grid topographic data has a less marked impact than getting the explicit hydraulic calculation correct, but still
leads to important differences in model behaviour. The paper highlights the need for better validation data capable of
discriminating between these competing approaches and begins to indicate what the characteristics of such a data set
should be. More generally, the techniques developed here should prove useful for any data set where the resolution
exceeds that of the model in which it is to be used. Copyright  2002 John Wiley & Sons, Ltd.
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INTRODUCTION

High resolution, high accuracy topographic data sets are becoming increasingly available for flood prediction
studies in a number of countries. In the UK, for example, a national data collection programme using airborne
laser altimetry (LiDAR) and stereo air-photogrammetry is now generating large volumes of high-quality data,
and in other countries an increasing number of ad hoc surveys are being flown. Previously, flood inundation
modelling has been constrained by the limited spatial resolution of available topographic data sources or the
cost of acquiring such data through ground survey. Hence, model resolution has typically been much finer than
the resolution of the topography data used to drive the simulation. As Blöschl and Grayson (2001: 26–27) note
‘it is rare to measure an input or model parameter at the same scale as it is to be used in a model’. Increasing
use of the above remote sensing techniques for topographic data capture has largely overcome this problem
and caused a rapid shift from a data-poor to a data-rich and spatially complex modelling environment with
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attendant possibilities for model testing and development. Despite an increase in computational power, the
relative resolution of model and topography data has now reversed for most codes typically used to simulate
flood inundation at the reach scale (see Bates and De Roo (2000) for a review). A newly emergent research
area, therefore, is how to integrate such massive data sets with lower-resolution numerical inundation models
in an optimum manner that makes maximum use of the information content available. This is the fundamental
problem addressed in this paper, and is the direct opposite to that with which most modellers are usually
faced. Nevertheless, with the retrieval of further high-resolution data sets from remotely sensed imagery this
may become an increasingly common situation in such areas as soil moisture (Franks et al., 1998) and snow
cover modelling (Cline et al., 1998).

In a previous paper (Marks and Bates, 2000) we described the integration of a LiDAR data set with
an existing two-dimensional finite element hydraulic model where the mesh discretization was derived
independent of the topography. The topography was then assimilated into the model in an a posteriori step
using weighted nearest-neighbour interpolation to assign an elevation value to each computational node. This
is typical of finite element mesh construction in many fields; but this is flawed in a number of ways, which
we illustrate below in terms of the specific example of topographic controls on flood inundation prediction.

First, we do not know what are the significant horizontal length scales of topographic variation within the raw
data set. Hence, we are unable to establish general guidelines for selection of appropriate model grid resolutions
for a given reach. Between closely located points (small horizontal length scales) topographic variations will
be indistinguishable from noise (sensor noise, measurement error), and hence are probably unimportant to
represent at the model grid scale. Over larger horizontal scales, the difference between topographic points
should become more significant, but we are unsure where the cut off between ‘noise’ and ‘significant variation’
occurs. We should also distinguish between noise and genuine topographic variations correlated over very
small length scales that may be more effectively represented in the friction term. In this respect, there is
an analogy between topographic parameterization in hydraulic models and large eddy simulation (LES) of
turbulence. In each, grid resolution distinguishes between those flow features at the grid scale or above that
need to be captured explicitly, and those at sub-grid scales that are more homogeneous and can be treated
statistically in terms of their impact on the mean flow field. A related concept in hydrology, the representative
elementary area (REA) of Wood et al. (1988), also has an affinity with this idea, although here one selects
a grid scale that maximally averages out small-scale variability (Grayson and Blöschl, 2001). The key step
in both LES modelling and topographic parameterization is thus to determine the filter width (grid spacing)
used to discriminate between flow features that need to be either explicitly or implicitly incorporated into the
model. To do this using topography data means we also have to assume that topographic significance is a
good proxy measure of hydraulic significance. As flood flows are primarily gravity driven, this is likely to be
a reasonable first-order approximation, as suggested in previous modelling studies (e.g. Nicholas and Walling,
1997).

Second, in constructing the mesh a priori, and only then interpolating the topographic data onto it (as in
Marks and Bates (2000)), we cannot be certain that we have optimally represented the original topographic
surface. In assimilating the data into the model it is comprehensively filtered and we have no way of checking
that points selected are those that are topographically significant (e.g. break points, linear features, maxima
and minima, etc.). For example, Marks and Bates (2000) modelled a 12 km reach of the River Stour, Dorset,
UK, using a two-dimensional finite element mesh consisting of 11 265 triangular elements of ¾30 m per side
and 6049 computational nodes. The LiDAR data set used to parameterize topography at these computational
nodes consisted of 261 634 x, y, z co-ordinates with a maximum horizontal spacing of ¾4 m. Land surface
height at each computational node was assigned on the basis of weighted nearest-neighbour interpolation of
the four closest points in the LiDAR data set. Thus, information from only 10Ð8% of the LiDAR data set was
incorporated into the final mesh and the representation of the LiDAR topographic surface by the model may
have been less than optimal. We clearly require a method that identifies significant topographic points (whose
spacing should be consistent with the general guidelines on filter width identified above) and which then uses
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these in the mesh construction process. This should result in an optimum representation of the topographic
surface at an appropriate scale.

Third, the River Stour example above demonstrates that whilst we can perhaps develop a methodology for
determining those topographic points that should be explicitly incorporated in the model grid, considerable
data redundancy is still likely. These data are not, however, information free, and we need to find ways
to incorporate this content into the model to make full use of the topographic sources available. As in
LES turbulence modelling, relatively homogeneous sub-grid scale features may still have an impact on the
mean flow field, and, similarly, a sub-grid closure model is required. Grayson and Blöschl (2001) suggest
three increasingly realistic methods of achieving such a closure: by using an ‘effective’ grid square value
for the parameter (see Beven (1989)); by using a distribution function to represent sub-grid variability; or
by parameterizing the sub-grid variability directly. Sub-grid topography impacts on hydraulic predictions of
inundation extent in a number of ways. For fixed grid (Eulerian) numerical models, sub-grid topography
controls the volume of water flowing on partially wet elements at the flow field boundary (King and Roig,
1988) and contributes to form drag at the element scale (Defina et al., 1994). Standard hydraulic modelling
assigns a height to each computational node based on interpolation of nearby measurements, and uses a
calibrated ‘effective’ friction coefficient to subsume all other sub-grid scale effects. Hence, such methods can
make no use of the sub-grid information available from high-resolution topography data and may suffer from
mass and momentum discrepancies because of a failure to account for the correct flow volume. Fortunately,
a number of methods have recently been developed that use distribution functions to represent sub-grid scale
effects and which can potentially be extended to incorporate otherwise redundant sub-grid scale topographic
data into a hydraulic model. Most of these methods concentrate on the problems caused by the inclusion of
partially wet elements in the numerical solution during dynamic flooding (King and Roig, 1988; Defina et al.,
1994; Bates and Hervouet, 1999; Bates, 2000; Defina, 2000). Defina (2000) has also presented a method
to parameterize the form drag component of resistance based also on the micro-scale topography within a
computational element; however, in this paper we only pursue the former class of sub-grid closure.

The basis of sub-grid corrections for wetting and drying is to introduce a proportionality constant � to
scale the shallow water continuity equation on partially wet elements to represent more correctly the true
elemental flow volume. For an element with height range Zf min ! Zf max, this coefficient takes a value of
zero when the element is fully dry (water surface elevation Zf elev D Zf min) and a value of one when it is fully
wet (Zf elev D Zf max). The shape of the � versus Zf curve for a particular element in the range Zf min ! Zf max

is then a function of its sub-grid topography. The distribution functions chosen to represent these curves have
ranged from simple linear relationships (e.g. Bates et al., 1992; Bates, 2000) to assumptions regarding the self-
affine fractal nature of topography (e.g. Defina et al., 1994); however, few studies have used topographic data
to parameterize directly the shape of the � versus Zf curves as suggested by Grayson and Blöschl (2001). The
exception here is Bates and Hervouet (1999), who obtained LiDAR data consisting of ¾800 000 topographic
points for a 1 ð 1 km2 section of tidal mud flat on the eastern coast of the UK. This was used to construct �
versus Zf curves for each element in a ¾20 m resolution two-dimensional finite element model of the area.
A hypothetical tide was then simulated with this model and the results compared with a control simulation
conducted without the sub-grid correction for dynamic wetting and drying. The two simulations showed
significant differences in hydrodynamic behaviour during a flood cycle. However, mesh construction was
again conducted prior to topography assimilation and no explicit separation of the topography data relevant
to grid and sub-grid scales was made. Hence, whilst it was concluded that the wetting and drying algorithm
resulted in significant changes in the simulation when compared with the control, the data assimilation method
may mean that this conclusion is somewhat flawed.

The purpose of this paper is to provide an example of the optimal assimilation of a spatially dense data
set into a complex numerical model that seeks to address the issues identified above. In particular, we are
concerned with situations where the data resolution far exceeds that of the computational discretization and
use the example of topographic data provision for flood inundation modelling. First, we conduct variogram
analysis of LiDAR-derived floodplain topography for the River Stour data set previously analysed by Marks
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and Bates (2000) to determine significant horizontal length scales. Second, we describe a method to determine
topographically significant points in this data set and explicitly incorporate these into the mesh discretization
for two-dimensional hydraulic models using the automatic mesh generator of Horritt (2000). Third, for this
discretization we use the data left over from the mesh generation process to parameterize the Bates and
Hervouet (1999) sub-grid-scale algorithm for dynamic wetting and drying implemented within a typical two-
dimensional finite element solution of the shallow water equations. This model is then compared with the
control simulations of flood inundation extent conducted for this reach by Marks and Bates (2000) using a
mesh derived independently of topography and with no sub-grid correction algorithm. Ultimately, comparison
of various methods of assimilating topography into flood inundation models should be tested against actual
hydraulic observations. Bulk flow observations (stage, discharge) from gauging stations cannot perform this
task adequately, as differences in topography may be subsumed within the calibration, and one requires some
fully distributed data source for a rigorous validation. Inundation extent is an obvious solution here, and it is
currently the only distributed hydraulic observation that it is possible to obtain over river floodplains. Though
methods have been developed to extract inundation from available satellite synthetic aperture radar (SAR) data
(Horritt, 1999; Horritt et al., 2001), these are currently limited to an accuracy of 85–90% of the true inundated
area due to the resolution of the imagery (¾12Ð5 m for ERS SAR and RADARSAT) and misclassification
errors. The latter result from a lack of fundamental understanding of the interaction of the radar signal with
wet soil, emergent and submerged vegetation, the single frequency and polarization modes and the fixed or
limited range of incidence angles available on current satellite systems. Though such data and sampling errors
are not large, they at present render it impossible to discriminate between competing models (Bates and De
Roo, 2000; Horritt and Bates, 2001). Thus, rigorous validation of topographic assimilation methods must await
the deployment of new satellite (e.g. ENVISAT, RADARSAT-2, ALOS and TerraSAR) and airborne SAR
systems, which potentially provide the required polarimetric or high-resolution capabilities. For this reason,
we have not attempted direct validation of the algorithms described in this paper against available inundation
extent data, as such a process is likely to prove inconclusive at present. Rather, the purpose of this paper is
to develop a methodology for the optimal use of high-resolution data sets in numerical models and test its
impact on hydraulic predictions in a given numerical code.

VARIOGRAM ANALYSIS OF LIDAR-DERIVED FLOODPLAIN TOPOGRAPHY

Geostatistical analysis can be used to uncover the spatial structure in distributed data sets (Issaks and
Srivastava, 1989), and in this study we wish to determine the spatial autocorrelation in proximal data. Burrough
and McDonnell (1998) state that the spatial variation of any variable can be expressed as the sum of three
components:

ž a structural component, having a constant or mean trend;
ž a random, but spatially correlated component,
ž a spatially uncorrelated random noise or residual term.

We can represent this spatial dependence using a variogram, in which we plot semivariance, � (half the
expected squared difference between any pair of data) against the lag h (the vector distance and direction of
separation between any pair of data) at a particular lag distance:

��h� D 1

2n

n∑

iD1

[z�xi� � z�xi C h�]2 �1�

where n is the number of pairs of sample points of attribute z separated by distance h, (Burrough and McDon-
nell, 1998). A plot of ��h� against h forms the experimental variogram to which a model variogram may then
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be fitted in order to describe the spatial patterns in the data. A sample plot showing key parts of a variogram
with a model fitted to the data is shown in Figure 1. At large lag values the fitted curve is seen to level
off, forming the sill ; at these lags there is no longer any spatial dependence between pairs of points. The
distance between where the curve starts at a low value of ��h� and rises to the sill, is the range c1. This
area describes the spatial dependence between related points and defines the maximum lag distance at which
spatial dependence still occurs. Finally, the point at which the curve bisects the y—axis marks the nugget
c0. This point shows the semivariance present at a lag of zero, namely the semivariance between a point and
itself. Thus, the nugget value represents a combination of short-range variation that has not been measured
(as it exists at shorter distances than the smallest sampling interval) and random measurement errors (Blöschl
and Grayson, 2001). Hence, the nugget allows one to estimate the error present in the data.

The LiDAR data scan pattern approximates to an irregular gridded structure; thus, variogram analysis was
performed using the public domain software package GSLIB and its ‘Gamv’ subroutine, which is designed
for irregularly spaced data (Deutsch and Journel, 1998). To minimize computational demands, this routine
was applied to four test areas on the River Stour floodplain instead of the complete data set. The full data set
and the processing (geoid conversion, vegetation removal, checking for potential systematic errors between
flightlines, etc.) applied to it are described in detail in Marks and Bates (2000), and hence the reader is referred
to that paper for more information. The test areas were selected to be representative of the whole floodplain
and sited away from vegetation (hedges, woodland) or major topographic features, such as embankments, that
may have a corrupting influence on the variogram results. The test areas were also sites where measurements
were obtained by one flightline only; thus, any possible systematic error present between adjacent flightlines
could be discounted at this stage. The characteristics of the four sites are summarized in Table I. For the set
of topographic points within each area, the structural component was first removed by fitting a polynomial
trend surface to the data. The residual values between the original LiDAR elevations and the corresponding

Figure 1. A sample model variogram showing range, nugget, sill ( Peter A. Burrough and Rachael A. McDonnell, 1998. Reprinted from
Principles of Geographical Information Systems by Peter A. Burrough and Rachael A. McDonnell (1998) by permission of Oxford University

Press

Table I. Summary of test areas used in the variogram analysis

Test area No. of Size (m2) Elevation (m) SD
data points Min Max Mean

1 739 100 ð 100 37Ð645 37Ð965 37Ð798 0Ð055
2 731 100 ð 100 36Ð435 37Ð485 36Ð818 0Ð115
3 751 100 ð 100 35Ð825 36Ð645 36Ð139 0Ð092
4 1313 130 ð 130 36Ð055 40Ð105 36Ð422 0Ð288
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horizontal location on the trend surface were then used in the calculation of the variogram. This was achieved
by calculating an omnidirectional variogram where all possible directions were combined in a single analysis.
Here, we assume that the directional tolerance is large enough to make the direction of any given lag separation
vector insignificant and only the magnitude of the lag is important. In effect, we calculate an average of all the
possible directional variograms. To avoid problems with clusters of collocated (and hence identical) points
obtained at high scan angles with the LiDAR instrument, we used a minimum lag spacing of 3 m (the
average spacing between LiDAR points located away from the ends of scan lines) and a tolerance of 1Ð5 m.
The experimental variograms resulting from this analysis are shown in Figures 2 to 5.
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Figure 2. Omnidirectional variogram of test area 1
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Figure 3. Omnidirectional variogram of test area 2
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Figure 4. Omnidirectional variogram of test area 3
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Figure 5. Omnidirectional variogram of test area 4

The omnidirectional variograms for each test area show a high degree of similarity and are largely stable
structures that reach a sill at a lag of approximately 7–10 m. Fitting a linear semivariogram model to the
data shows a nugget semivariance of 0Ð008–0Ð013 m2. This is broadly equivalent to the quoted 0Ð15 m RMS
error of the LiDAR data (Environment Agency, 1997). Test area 4 reaches a sill at similar lag to areas 1,
2 and 3 and with a low semivariance; however, the structure is very erratic at lower lag spacings. This is
because area 4 may contain some data points that represent the top of the vegetation canopy rather than the
ground surface and which occur because the vegetation removal algorithm applied to the raw data can never
be 100% successful (Marks and Bates, 2000).

Individual variograms of the test areas were also produced along two directional axes to measure the
semivariance of the scanline and flightline. This was to see if there was any variation in the spatial dependence
scales obtained from the omnidirectional variogram that had been ‘masked’ in such a generalized measure.
For the first variogram, the direction was set along the scanline (60° azimuth). This was constrained to the
individual scanlines by using a 1 m tolerance for the bandwidth and a low angular tolerance of š10°. A
flightline transect was also taken by selecting a line at an angle of 320° approximately corresponding to a
succession of points measured by different scans along the flightpath of the aircraft. A wide tolerance of
š40 °W was chosen, but again with a constrained bandwidth of 1 m so that elevation measurement points
slightly out of line with one another would still be analysed as if they were directly adjacent. The resulting
variograms were similar in appearance to the omnidirectional variograms and confirm the scales of spatial
dependence shown in Figures 2 to 5.

The above analysis indicates that, below a grid spacing of approximately 10 m, significant spatial
dependence between topographic points exists. The variogram range thus provides a general criterion for
grid size selection for a given application. This rule relates to the background variability of the topography,
and does not account for the length scales of specific features (levees, ditches, often man made) that may
have a significant impact on flood hydraulics. However, for finite difference models this analysis may be
sufficient to enable a grid size to be selected. For numerical methods, such as the finite element technique,
which allow resolution to vary across the domain, we need to go further and identify topographically
significant points in order to take full advantage of the method. In this case, the variogram analysis
provides a useful insight into what the spacing of these points might be and hence can inform decisions
on how many important points may be sufficient to represent the surface. This is explored in the following
section.

IDENTIFICATION OF TOPOGRAPHICALLY SIGNIFICANT POINTS FOR AUTOMATED MESHING

Having determined a theoretically appropriate grid spacing based on the typical variogram range in the River
Stour data set, we can now proceed to determination of the topographically significant points within the
digital elevation model (DEM). A number of methods to accomplish this task have already been developed
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for the purpose of converting regular gridded DEM data to a triangular irregular network (TIN) structure.
The similarity of TINs with the finite element discretizations employed here means that such methods can
be readily adopted, although there are differences between TIN and finite element approaches. In particular,
the TIN structure is designed to maximize surface representation and takes no account of numerical stability
issues. Most finite element models work best where there is a smooth transition between areas of small
and large elements, which promotes stability, and where element shapes are near-regular, which minimizes
mass balance errors (see Löhner (2001)). TINs do not necessarily preserve these features and, therefore,
we may need to augment the number of points used to represent the surface during the mesh generation
process to ensure a stable and mass conservative solution of the controlling equations (see Löhner (2001) for
a more complete discussion of grid generation). It should also be noted that to use these methods on irregular
topography data, such as that generated by a LiDAR instrument, requires that the data first be converted into
a regular grid.

Methods for determining topographically significant points are reviewed by Lee (1991), who saw the
purpose of such methods as being to extract the smallest set of points that gives maximum information
about the topographic surface. According to Lee (1991), all such methods have two keys steps. These are
(1) a method to establish the ‘importance’ of an elevation point, and (2) specification of a stopping rule
that indicates when to terminate the selection process. Points are said to be important when they cannot be
easily interpolated using the elevations of neighbouring points; however, a number of methods are available
to do this. Thus, Lee (1991) compared three algorithms that extract the subset of significant points from a
raster DEM: the very important point (VIP) method (Chen and Guevara, 1987), the hierarchy transform (HT)
method (De Floriani et al., 1984) and the drop heuristic (DH) method (Lee, 1989). All showed strengths and
weaknesses, and these conditioned the circumstances under which each method was appropriate. The VIP
method was best suited to the detection of sharp changes in height over short distances and local pits and
peaks, but whilst it was computationally efficient it performed less well on gentle slopes. The HT method
had a very efficient data structure; however, it tended to produce long thin triangles and distortion was
evident in the transition from rugged to flat regions. The DH method provided the closest match to the
original DEM, but was computationally demanding as it drops only one point at each iteration and then
evaluates all points remaining in the solution set. It is thus only suitable for application to small DEMs. More
recent work in this area has concentrated on developing extensions to the HT method (e.g. De Floriani and
Puppo, 1995; De Floriani et al., 1996; Puppo et al., 1997; Brodlie and Wood, 2000) that give multi-resolution
representations of a surface for efficient visualization, rather than algorithms to ensure absolute accuracy.
Although multi-resolution methods could be used to maximize surface representation, the work by Lee (1991)
provides one of the few comparative studies in this area and has hence been used to select the method
adopted here.

None of the above methods is ideal for LiDAR data of river floodplains, as such data sets are typically
extremely large (of the order of a gigabyte) and contain both areas of very flat relief and sharp breaks of
slope to linear features and structures (embankments, levees, terraces, etc.). The latter are hydraulically very
significant to inundation development and need to be accurately represented in any flow model. Further,
we should select a method that best respects the requirements of finite element models. These constraints
rule out both the HT and DH methods in favour of the VIP method, despite its relative underperformance
in areas of low slope. The VIP method passes a 3 ð 3 window (whose width should clearly be no greater
than the variogram range) over all the points of a grid and for each sees how well the eight surrounding
grid points interpolate it along the cardinal and inter-cardinal profile lines. This is done simply by the
sum of errors between the observed and interpolated heights. Points deemed well estimated are also
deemed unimportant, as they can be replicated accurately by their neighbouring points; therefore, points
are selected based on their significance in describing the surface. After the initial pass of the filter, the
most significant points within the mesh are selected first, with less-significant points being added to the
output point coverage until a user-specified cut off is reached. This stopping rule is defined in terms of
a maximum number of significant points in the output coverage and is based on a compromise between
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the computational resources available and the global rule for nodal spacing determined from the variogram
analysis. This point coverage can then be subsequently converted into a TIN or, as in our case, a model
discretization.

To use this method on the 261 634 irregular points in the raw LiDAR data set requires that these first be
gridded. However, if a cell contains no data the algorithm automatically assigns it a high significance. As
the maximum horizontal spacing of the ‘raw’ LiDAR data was ¾4 m, a 5 m grid was used to ensure that
no blank cells remained in the gridded coverage. Coincidentally, this spacing also means that the width of
the 3 ð 3 VIP filter is 10 m and identical to the range identified in the variogram analysis. This also had
the advantage of ‘thinning’ the data, so as to prevent the generation of excessively thin (and thus potentially
unstable) elements within the output mesh. In this way the total number of points in the final 5 m gridded
DEM decreased to 96 213. The reason for this large reduction is that certain areas of the floodplain have point
densities in the ‘raw’ data set of much greater than one per ¾4 m. In particular, points cluster together at
the ends of scan lines, and higher point densities are obtained in areas where the swaths from two different
flightlines overlap.

Once gridded, the VIP procedure was run on the data using the stopping rule that the final output should
contain ¾2% of the points in the input coverage. This was chosen, as here the mesh generation process
was subject to the additional constraint that we wished the final topographically optimum mesh to have
approximately the same number of nodal points as the topographically independent mesh of Marks and
Bates (2000). This was both to facilitate a rigorous comparison and to control against the possibility that
the model calibration might not be stationary with respect to scale. The model constructed by Marks
and Bates (2000) had 6049 nodes and 11 265 triangular elements with an average size of ¾30 m per
side. This represented the most dense discretization that was computationally feasible when the original
simulations were conducted in 1998, but its resolution is clearly coarser than the ¾10 m global spacing
rule indicated by variogram analysis. In this case, the trade off between the ¾10 m global spacing rule and
¾30 m resolution based on 1998 computational constraints was skewed towards the latter. The 2% threshold
was found to produce 2173 points classified as being topographically important within the domain. When
combined with nodes representing the channel (2885), the domain boundary (831) and the lower end of the
domain beyond the LiDAR coverage (573), this gave a total 6462 significant points to be used in mesh
generation.

As noted above, of the methods reviewed by Lee (1991) the VIP method best respects good discretization
principles for finite element methods. However, it does not explicitly follow such guidelines and, therefore,
needs to be used in conjunction with a mesh generator that can both be forced to honour specific points
and add additional points to create a smoothly varying mesh of regular element shapes. For two-dimensional
triangular elements, mesh generators are typically based on a conforming Delaunay triangulation that meets
constraints on minimum internal angle and maximum area for each element. Whilst a substantial literature
concerned with the generation of such meshes exists (e.g. Frey, 1987; Frey and Field, 1991; Rebay, 1994),
and techniques for adapting meshes to the spatial properties of finite element solutions are available (Knupp,
1995), specific mesh generators for fluvial applications are rare. One of the few available is the Cheesymesh
programme of Horritt (2000), a derivative of the Easymesh code developed by Bojan Niceno at the Technical
University of Delft, The Netherlands. This meets the above criteria for mesh quality, and also enables the
incorporation of a regularly meshed channel within an irregularly meshed domain. This is required for fluvial
applications as, in order to reduce computational constraints, it is usual to elongate channel elements in the
downstream direction (e.g. Gee et al., 1990; Feldhaus et al., 1992; Bates et al., 1998). Cheesymesh determines
the elongation ratio for these elements using a criterion based on local channel curvature (see Horritt (2000)).
This was determined through comparison of numerical and analytical solutions of the shallow water equations
for a range of computational grids. Cheesymesh is therefore an ideal mesh generator for this class of application
and has a robust physical basis.

The discretization derived from Cheesymesh using the points determined by the VIP method is shown
in Figure 6b and compared with the original topographically independent mesh of Marks and Bates (2000)
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Figure 6. Finite element meshes developed for a 12 km reach of the River Stour, Dorset, UK, using (a) topographically independent and
(b) topographically optimum discretization methodologies

in Figure 6a. The final number of computational points in the new discretization is 8132, connected as
15 396 elements with an average length per side of ¾25 m. Cheesymesh has therefore needed to add 1670
points to the coverage in order to obtain a conforming finite element mesh capable of preserving solution
quality. At these points the topographic value is assigned by weighted nearest-neighbour interpolation. The
same channel topography is used for both models, and is based on 25 cross-sections surveyed by the UK
Environment Agency. The topography as incorporated into each model is shown in Figure 7, and cross-
sections through each discretized topographic surface are shown in Figure 8 and compared with the raw
topography data. Figure 8 shows differences between the two surfaces that are likely to be hydraulically
significant. Differences of several metres are indicated in certain places, and, in general, the mesh generated
using the VIP algorithm follows the original surface better, particularly for cross-sections B, C and D. For
cross-section A, both topographically independent and topographically optimum meshes are similarly in error
compared with the original data. These differences result from the coarse model grid (¾30 m), compared
with the LiDAR data, and the need to undertake interpolation to compare unstructured grids with different
topologies. This means that each model floodplain cross-section is defined by interpolation from only six
to eight nodes on each bank, which can be up to ¾15 m from the interpolated section and can lie on
surfaces with substantially different elevations (levees, embankments, bank collapses, etc.). Misrepresentation
of any of these is likely due to the coarse spatial sampling of the finite element grids if important points
are not identified and this will lead to the observed errors in interpolated cross-sections. Overall, though the
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Figure 7. Topographic surface represented by the (a) topographically independent and (b) topographically optimum discretization method-
ologies shown in Figure 6

method developed in this paper is still not an ideal representation of the original surface, it is a substantial
improvement over earlier mesh generation methods. One can also note the lateral shift in channel location
of up to 10 m between the map data (surveyed in 1961) from which the channel location was digitized
and the LiDAR survey (taken in 1997). Although we cannot be certain of the accuracy of this figure, some
channel movement is to be expected in a dynamic river environment, and this will introduce additional
error.

USE OF REDUNDANT DATA FOR PARAMETERIZATION OF SUB-GRID SCALE CORRECTIONS
FOR DYNAMIC WETTING AND DRYING

For each element in the topographically optimum mesh the sub-grid topography was used to parameterize
directly the wetting and drying algorithm of Bates and Hervouet (1999). This algorithm is described fully in
a number of previous papers (Bates and Hervouet, 1999; Bates, 2000) and, therefore, is only briefly reviewed
here. The algorithm is designed for use with the two-dimensional shallow water equations, which can be
expressed in non-conservative form as:

Mass conservation
∂h

∂t
C uÐgrad�h� C hdiv�u� D 0 �2�
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Momentum conservation

∂u

∂t
C uÐgrad�u� C g

∂h

∂x
� 1

h
div��th grad�u�� D Sx � g

∂Zf

∂x
�3�

∂v

∂t
C uÐgrad�v� C g

∂h

∂y
� 1

h
div��th grad�v�� D Sy � g

∂Zf

∂y
�4�

where u and v are the depth-averaged velocity components [with dimensions LT�1] in the x and y Cartesian
directions [L], h is the depth of flow [L], Zf is the bed elevation [L], �t is the turbulent viscosity [L2T�1],
Sx and Sy are the source terms (friction, Coriolis force and wind stress), g is the gravitational acceleration
[LT�2], and t is the time [T].

For moving boundary problems, such as dynamic flooding, solved on fixed numerical grids, a number of
problems arise with the numerical solution of Equations (2) to (4) as a result of the partially wet elements
that occur at the flow field boundary (see Lynch and Gray (1980) for a discussion). This is a consequence
of attempting to simulate a continuous water surface with a discrete numerical grid and generates incorrect
predictions of mass and momentum flux in such zones. Numerical instability may also be manifest, as small
changes in water depth can bring large numbers of elements into and out of the solution, thereby generating
spurious oscillations in boundary position. Bates and Hervouet (1999) also show that poor representation of
shallow water hydraulics can have adverse impacts over the whole flow domain.
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The basis of wetting and drying algorithms for fixed grid models is to try to represent better the shallow
water hydraulics on partially dry elements (e.g. King and Roig, 1988; Defina et al., 1994; Bates and Hervouet,
1999; Defina, 2000). The Bates and Hervouet (1999) algorithm is typical of this class of solution and was
chosen here as it is relatively simple and is the only algorithm that incorporates both mass and momentum
corrections. Momentum is corrected using the methodology of Hervouet and Janin (1994). Here, partially
wet elements are included within the domain and the dominant driving term in the momentum equation is
assumed to be:

∂u

∂t
D �g

∂h

∂x
�5�

Other terms, e.g. friction and diffusion, still act on such an element but are relatively unimportant. The above
water slope term may then be cancelled or replaced to prevent the development of unrealistic velocities due
to the spurious non-zero free surface gradient across the element. Mass conservation is ensured using the
sub-grid scaling method developed independently by King and Roig (1988) and Defina et al. (1994). Here, a
scaling coefficient � is defined which varies from zero to one for each element as it tends from fully dry (zero)
to fully wet (one). This coefficient is then used to scale the continuity equation to represent the true volume of
water residing on that element at each time step. According to Defina et al. (1994), the continuity Equation (2)
thus becomes:

�
∂h

∂t
C EuÐgrad�h� C hdiv�Eu� D 0 �6�

�, therefore, varies with water depth, and the form of the relationship between � and h is dependent on the
sub-grid topography (i.e. � D f�Zf, h�).

The � versus Zf curves were then calculated for the River Stour LiDAR data using the method outlined
by Bates and Hervouet (1999) and Bates (2000). For each element in the mesh a Delaunay triangulation of
the sub-grid topographic points plus the three element vertices was generated. This led to a highly detailed
representation of sub-grid topographic variations. In effect, we have replaced a large planar element with a
set of smaller sub-grid planar triangles from which we can more accurately calculate the proportion of the
element inundated for a given free surface elevation. The functions � D f�Zf� with � varying from zero to one
were discretized in terms of 20 piecewise linear segments representing 5% increments of inundation extent.
This proved sufficient to represent the � D f�Zf� curves as a smoothly varying function. It should be noted
that, for a topographically independent mesh, the range of sub-grid topography can potentially be wider than
the height range over an element and hence � does not vary between zero and one over the element height
range. This can generate discontinuities as elements enter or are removed from the numerical solution. Use
of the VIP algorithm should alleviate this problem: elements should not contain local maxima and minima,
as these will be automatically selected as computational nodes.

To assign � values at time step t for a given element we take, at time t�1, the water free surface elevation
of the node with maximum depth as being the ‘true’ regional water free surface elevation. � is then linearly
interpolated from the � D f�Zf� curve for that element and used explicitly to evaluate Equation (6) at time t.

MODEL TESTING AND ANALYSIS

For each discretization shown in Figure 6 a 1 in 4 year flood event was simulated that took place over 62 h on
and around 20 December 1993. Flows were monitored at nationally maintained gauging stations located at the
up- and down-stream ends of the reach and provided the boundary conditions for the model. These consisted
of an imposed discharge at the upstream boundary and an imposed stage at the downstream boundary. This
gives a well posed numerical problem, provided there is no recirculation at the downstream end. The event was
discretized into 55 800 time steps of 4 s duration, with initial conditions based on steady-state flow calculated
using the gauged discharge and stage at the start of the event. For the dynamic simulations, boundary conditions
consisted of upstream discharge and downstream stage hydrographs. Identical friction factors were assigned
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to each model based on the calibration of the topographically independent mesh conducted by Marks and
Bates (2000), which disaggregated the model domain into two areas: channel and floodplain. Calibration was
achieved by manipulating the floodplain friction factor (to which the model was most sensitive) to replicate
the timing of peak discharge at the downstream boundary only. All other aspects of the hydrograph (shape,
volume, peak magnitude, etc.) were left to vary freely. Final values for the friction specified in terms of
Manning’s n were 0Ð017 for the channel and 0Ð035 for the floodplain.

Simulations were conducted using the modified version of the TELEMAC-2D model developed by Bates and
Hervouet (1999), which solves Equations (3), (4) and (6) for a finite element mesh of linear triangular elements
with computational nodes located at the element vertices. Hence, water depth and the two components of the
depth-averaged velocity vector are calculated and both sub- and super-critical flow regimes can be handled. A
fractional step method (Marchuk, 1975) is used, where advection terms are solved initially, separate from the
propagation, diffusion and source terms which are solved together in a second step. For the advection step,
several schemes may be used, with the Method of Characteristics chosen here for the momentum equation.
To ensure mass conservation, the Streamline Upwind Petrov Galerkin (SUPG) method (Brookes and Hughes,
1982) has been applied for the advection of h in the continuity equation. Though developing a model using
the non-conservative shallow water equations may result in greater problems with mass conservation, their use
is justified here; this is because in the conservative equations, discharge is the main unknown, and to recover
velocities one needs to divide by the water depth. This is a significant problem for calculations that involve
dynamic wetting and drying of the domain as the water depth goes to zero. Such problems are reduced by
use of the non-conservative form, and hence this was chosen for the simulations reported here. Turbulence
was represented using a zero-equation closure scheme, although, given the element sizes employed, the final
scheme was rather insensitive to the values of �t in a physically realistic range (�t D UŁh, where UŁ is the
shear velocity). The turbulent viscosity was therefore set at the upper end of this range, at 2Ð0 m2 s�1, although
a lower value could easily have been used. The precision of the numerical solver was set at 1 ð 10�4.

Three simulations were conducted with this model: a control simulation with the topographically indepen-
dent mesh and two simulations with the topographically optimum mesh developed here, one with the sub-grid
correction and one without. Mass balance performance was similar for each model (seeTable II), although the
topographically independent model performed better in this respect. This is likely to be because this mesh
has not been forced to honour specific topographic points, and thus its elements are rather more regular (see
inset in Figure 6). Further work is thus required on techniques to turn a set of irregular data points into a con-
forming finite element mesh that can better preserve mass balance. Figure 9 shows the downstream predicted
discharge for each simulation compared with the observed discharge at the Blandford Forum gauging station.
Although stage at this point has been used as a model boundary condition, the calibration strategy adopted
was based on replicating timing of peak stage only. Hence the discharge is at least quasi-independent of the
model and can provide some information on model performance. Differences between the simulations show
that changing topographic representation does have some effect on bulk flow prediction, but these differences
are small and, as anticipated, could be subsumed within a calibration process.

Table II. Mass balance performance for each model

Model Average
instantaneous
mass balance
error (m3 s�1)

Average mass
balance error per
time step (% of
initial volume

within the domain)

Mass lost as a
percentage of
hydrograph
volume (%)

Topographically independent 1Ð12 2Ð75 ð 10�6 1Ð37
Topographically optimum 4Ð68 1Ð03 ð 10�5 5Ð75
Topographically optimum plus sub-grid scale

correction for dynamic wetting and drying
5Ð38 1Ð18 ð 10�5 6Ð61
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Figure 9. Comparison of observed and predicted downstream hydrographs for the three simulations conducted in this study

Figure 10 shows water depths predicted by each model at three time steps during the simulation: during the
rising limb (t D 13 h), at peak inundation (t D 33 h) and at the end of the simulation when the hydrograph
has passed out of the domain (t D 62 h). Significant differences in inundation extent between these models
are shown on the rising limb and at the end of the event. These are shown in more detail for two areas of
the floodplain on the rising limb of the hydrograph in Figure 11. At the end of the event, the differences
between simulations are likely to be due to water ponded on the floodplain as a result of better incorporation
of topographic minima in the topographically optimum model. These will drain only slowly, if at all, and
ultimately we may require some kind of surface infiltration algorithm (e.g. Stewart et al., 1998) to simulate
de-watering of the floodplain. At peak inundation, differences in inundation extent are much less marked,
although differences in water depths do exist. This is confirmed in Figure 12, which shows stage hydrographs
through the event at three floodplain locations. This is because at peak flow the inundation boundary lies
towards the edge of the floodplain on areas of higher slope, where differences in water depth do not translate
into differences in boundary position. This is significant, as most inundation data record either maximum
extent (e.g. post-event reconstructions from trash lines, tide marks, etc.) or are collected at or around the
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Figure 12. Stage hydrographs at three floodplain locations (A, B and C) for the three simulations conducted in this study

time of peak inundation (e.g. airborne surveys of flood extent for use by civil protection authorities). This
is also true of most satellite images of flood extent (e.g. Bates and De Roo, 2000), which tend only to be
retrieved from the archive for major floods and at the time of the flood peak. This analysis indicates that
none of these data sources is likely to prove optimum for model validation. Rather, we require sampling
of a number of synoptic images of flood extent through an event, and particularly on the short-duration
rising limb.

The most significant differences in water depth are caused by changing the discretization. Addition of the
sub-grid wetting and drying correction has some additional effect in certain areas (e.g. area 1 on Figure 11),
but in general these are much less pronounced. Nevertheless, this study indicates that both determination of
topographically significant points and sub-grid correction for dynamic wetting and drying should be adopted
for two-dimensional modelling of inundation extent when high-resolution topography data are available.

CONCLUSIONS AND FUTURE RESEARCH NEEDS

This paper has described a processing chain for the optimum incorporation of high-resolution topographic
data into flood inundation models. This consists of: (i) an assessment of significant length scales of variation
in the input data sets; (ii) determination of significant points within the data set; (iii) translation of these
into a conforming model discretization that preserves solution quality for a given numerical solver; and
(iv) incorporation of otherwise redundant sub-grid data in a computationally efficient manner. Whilst any
given element of this chain can be replaced as more effective methods are developed, its basic structure
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would appear reasonable and leads to significant differences in hydraulic predictions when compared with a
control simulation. For example, height differences between the topographically optimum and topographically
independent meshes were up to 2 m, and this led to corresponding differences in water depth. This basic
approach is likely to be useful for any data set where the resolution exceeds that of the model in which it is
to be used.

An important area for further study is to replicate the analysis conducted here for other floodplains and
other high-resolution topography data sets to determine how general the conclusions regarding significant
length scales are. This should indicate whether there are thresholds between ‘information’ and ‘noise’ that
are transferable between different floodplains or classes of floodplains. A second area for research should be
directed at enhancing certain components of the processing chain. Thus far we have used available algorithms;
however, even this preliminary analysis has demonstrated a number of areas where, for flood inundation
modelling, we require development of specific processing techniques. In particular, we require an algorithm
capable of determining significant points in irregular data, rather than being forced to first grid the data as
with the methods explored here. This may mean that we need more rigorous ways of identifying significant
points and may ultimately place more stress on the mesh generation phase if the ‘irregular VIP’ algorithm
generates a highly distorted discretization.

It is also clear that we need methods to identify and connect linear topographic features in the LiDAR data,
given their significant hydraulic impact. None of the methods described in this paper does this explicitly, and
their ability in this respect needs to be explored further. Similarly, the variogram analysis suggests that we
need to improve vegetation removal algorithms used on LiDAR data to distinguish better between vegetation
and ground hits. We should also recognize that the simulations developed in this paper still make use of a spa-
tially lumped and calibrated friction surface. This is the other key unknown in flood inundation modelling and
can also potentially be determined from LiDAR data. Frictional resistance on floodplains is dominated by drag
due to vegetation. Studies have shown that vegetational resistance is determined by an interaction between
certain plant biophysical properties (height, stiffness, etc.) and flow (Kouwen and Li, 1980; Fathi-Moghadam
and Kouwen 1997; Kouwen and Fathi-Moghadam 2000; Kouwen, 2000) and that these biophysical properties
all correlate with plant height (Temple, 1987). Vegetation height can be calculated from LiDAR data as part
of its standard processing chain, and hence can be used to assign spatially and temporally variable friction
coefficients to a hydraulic model. Preliminary studies two-dimensional finite element codes have already been
conducted by Mason et al. (submitted), and we now require research to unify this with the techniques for the
optimum specification of topography developed here. In the medium term one can envisage a system capable
of, at least semi-automatically, generating an optimal discretization that captures both significant topographic
features (embankments, levees) and vegetation patches (hedges, stands of trees), coupled with direct parame-
terization of sub-grid-scale topographic and frictional effects. The need for calibration of such a model should
be minimized, and one might thus expect some reduction in predictive uncertainty. In practical terms this
would be a major step towards increasing forecast skill for flood inundation codes.

Finally, and perhaps most importantly, we require a rigorous validation data set in order to determine
the absolute rather than relative utility of these developments and begin to discriminate between competing
approaches. The analysis presented in this paper begins to indicate what the characteristics of such a data
set might be. We clearly need high resolution and accurate inundation extent data sampled synoptically a
number of times through a flood hydrograph. In particular, we require data from the short-duration rising
limb, as this is where we anticipate we will have the best opportunity to discriminate between competing
approaches. Data at peak inundation are less helpful, and data on the falling limb are likely also to record
static ponding of water on the floodplain, which is rather easier to model, as well as true dynamic effects.
Ideally, such data would be supplemented by stage records from a number of locations internal to the model
domain, which although only zero-dimensional in space are one-dimensional in time and would allow actual
model variables rather than binary pattern information (e.g. Aronica et al., 2002) to be validated. Collection
of such data would be a major logistical exercise, but is probably the only way to validate currently available
inundation codes rigorously.
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