Water Recycling and Resource Recovery in Industry

Analysis, technologies and implementation

Edited by Piet Lens, Look Hulshoff Pol, Peter Wilderer and Takashi Asano

Contents

Lisi	t of contr	ributors	xiv
	face		xix
-	3 · · ·		
Pai	rt I: Ind	ustrial reuse for environmental protection	1
1		inable water management in industry	3
	Jacq	ues J.M. van de Worp	
	1.1	The sustainability concept	3
	1.2	Water resources	5
	1.3	Sustainable water use in industry	14
	1.4	Sustainable industrial water management	23
	1.5	Conclusions	25
	1.6	References	26
2	Wate	er reclamation, recycling and reuse in industry	29
	Audrey D. Levine and Takashi Asano		
	2.1	Introduction	29
	2.2	Water reuse definitions	30
	2.3	Industrial water reuse	30
	2.4	Wastewater treatment technology	35
	2.5	Industrial use of reclaimed municipal wastewater for	
		cooling tower make-up water	44
	2.6	Industrial use of reclaimed municipal wastewater for	
		industrial process water	49
	2.7	Summary and conclusions	50
	2.8	References	50

vi Contents

3		ronmental protection in industry for sustainable	
		lopment	53
		N.L. Lens, Marcus Vallero, Graciella Gonzalez-Gil,	
		Rebac and Gatze Lettinga	
	3.1	Introduction	53
	3.2	Integrated concepts for sustainable industrial technology	54
	3.3	Anaerobic technology in clean technology	57
	3.4	Risk assessment and public acceptance	61
	3.5	References	63
Par	t II: Re	source protection policies in industry	67
4	Clear	ner production: history, concepts, policies and instruments,	
	incer	ntives and practical examples	69
	Fran	k van den Akker	
	4.1	Introduction	70
	4.2	Explanation of methods and measures to achieve	
		sustainable development	71
	4.3	Comparison of Instruments in 70s and 80s with those for	
		the 21st century	77
	4.4	Process of change towards sustainable development	78
	4.5	"Rules of the game" for successful collaboration	81
	4.6	Closing remarks	83
	4.7	References	84
5	Natio	onal policies for efficient resource utilization and protection	86
	Ralp	h A. Luken and Anja Sedic	
	5.1	Introduction	86
	5.2	Rationale for reducing resource use intensity in industry	87
	5.3	Command and control instruments	89
	5.4	Economic instruments	91
	5.5	Other instruments	101
	5.6	Evaluation of national policies for resource conservation	103
	5.7	Supporting measures to adopt input oriented policies	104
	5.8	References	106
6	Strate	egies for the environmental management of chains	109
	Geof	frey Hagelaar and Jack van der Vorst	
	6.1	Introduction	109
	6.2	Supply chain management	112
	6.3	Life cycle assessment	117
	6.4	Environmental care strategies and types of LCA	120
	6.5	Requirements to types of LCA implementation	121
	6.6	Supply chain structures and requirements	123

Contents	V11
Contents	V 11

	6.7	Case studies	125		
	6.8	Prospect for chain management in closing industrial			
		cycles	128		
	6.9	References	128		
7	Ecol	ogical modernization of industrial ecosystems	132		
		van Koppen (C.S.A.) and Arthur P.J. Mol			
	7.1	Introduction	132		
	7.2	Industrial ecology as a concept of industrial			
		transformation	134		
	7.3	Agents and institutions in industrial transformation	138		
	7.4	Eco-industrial park configurations	146		
	7.5	Conclusions and outlook	155		
	7.6	References	156		
Par	t III: T	ools to assist on in closing industrial water and resource			
cyc	les – A.	Regulatory measures	159		
8	Inter	national guidelines for water recycling	161		
	John	Anderson			
	8.1	Introduction	161		
	8.2	Health and environmental protection	163		
	8.3	Examples of water recycling regulations and guidelines	165		
	8.4	Developing an international framework with national			
		decision making	170		
	8.5	Discussion	176		
	8.6	Conclusions	177		
	8.7	References	177		
9	Eco	management and audit scheme a step forward towards	179		
	sustainability				
	Fran	s Lemaire			
	9.1	Introduction	179		
	9.2	Objectives of EMAS	181		
	9.3	EMAS and EPER (European pollutant emissions			
		register)	182		
	9.4	EMAS: A stepwise approach	182		
	9.5	Auditing	189		
	9.6	Conclusions	190		
	9.7	References	190		

viii Contents

10		available techniques (BAT) for the reuse of waste oil	191
	-	r Dijkmans and Anne Jacobs	
	10.1	Best Available Techniques (BAT)	191
	10.2	Treatment of waste oil in Flanders	193
	10.3	Description of the treatment and pre-treatment systems	194
	10.4	Technical, economic and environmental evaluation of the	
		systems	196
	10.5	References	200
		ols to assist on in closing industrial water and resource	
cycle	es – B. S	System analysis	203
11	Wate	r pinch analysis: minimisation of water and wastewater in	
	the pr	rocess industry	205
	Danie	elle Baetens	
	11.1	Introduction	205
	11.2	Theoretical framework	206
	11.3	Case study of a water pinch application	219
	11.4	Water pinch: practical implementation	225
	11.5	References	227
12	Key p	parameter methodology for increased water recovery in the	
	pulp a	and paper industry	229
	Johar	nnes Kappen and Peter A. Wilderer	
	12.1	Water loops in papermaking systems	229
	12.2	Definition of key characteristics	231
	12.3	Verification of the definitions	238
	12.4	Application of the <i>K</i> -parameters	243
	12.5	Conclusions and Outlook	249
	12.6	References	250
13	Syste	matic approach to water resource management in industry	252
	Antoi	n S. Deul	
	13.1	Introduction	252
	13.2	Challenges of water reuse	253
	13.3	Systematic approach to water resource management	256
	13.4	Case study – Paper industry	261
	13.5	Conclusions	269
	13.6	References	269
14	A cus	tomised software tool for environmental impact	
		sment of drinking water production and distribution	271
		vke K. Voorhoeve and Ronald Hopman	
	14.1	Introduction	271
	14.2	I CA	272

Contents	ix

	14.3	LCAqua	275
	14.4	References	280
15	Quant	tifying the sustainability of technology by exergy analysis	282
	Jo De	ewulf and Herman Van Langenhove	
	15.1	Introduction: sustainability and technology	282
	15.2	Exergy	286
	15.3	Exergy and sustainability: principles	286
	15.4	Exergy and sustainability: applications	290
	15.5	Further perspectives	294
	15.6	References	295
Part	III: To	ols to assist on in closing industrial water and resource	
cycle		Characterisation of process water quality	
16		tical techniques for measurement of physico-chemical	
	prope		297
		H. Frimmel	
		Introduction	297
	16.2	Basis of analytical data	298
	16.3	Spectrometry	302
	16.4	Chromatography	307
	16.5	Electroanalytical methods	312
	16.6	Special methods for water analysis	315
	16.7	On-line monitoring	320
	16.8	References	320
17		of modelling to prevent food contamination in production	
	chain		323
		de Jong	
	17.1	Introduction	323
	17.2	Predictive models	326
	17.3		331
	17.4	Conclusions and opportunities	334
	17.5	References	334
		chnological aspects of closing industrial cycles –	
A. P	otential	ls of environmental biotechnology	337
18	Poten	itials of biotechnology in water and resource cycle	
		gement	339
	Valer	ntina Lazarova	
	18.1	Introduction	339
	18.2	Role of water reuse in closing the water cycle	340

x Contents

	18.3	Technical advance and challenges for water reuse	343		
	18.4	Innovative biotechnologies for closing water cycle	347		
	18.5	Design of innovative bioreactors for industrial			
		wastewater treatment	354		
	18.6	Conclusions	355		
	18.7	References	356		
19	Nove	l biological processes for advanced wastewater treatment	359		
	Ferno	ando Fdz-Polanco, Santiago Villaverde, Miguel A. Urueña			
	and P	Pedro A. García-Encina			
	19.1	Introduction	359		
	19.2	Novel bioconversion processes of nitrogenous			
		compounds	361		
	19.3	Novel bioconversion processes of phosphorus			
		compounds	372		
	19.4	Novel bioconversion processes of sulfurous compounds	376		
	19.5	References	382		
20	Biode	egradation of recalcitrant and xenobiotic compounds	386		
	Graci	iella Gonzalez-Gil, Robbert Kleerebezem, Bo Mattiasson			
	and F	Piet N.L. Lens			
	20.1	Introduction	386		
	20.2	Microbiology of anaerobic biodegradation	389		
	20.3	Anaerobic bioreactor technology	407		
	20.4	Novel developments	417		
	20.5	References	422		
Part	: IV: Te	chnological aspects of closing industrial			
cycle	es – B. <i>A</i>	Advanced technologies for meeting reuse criteria	431		
21	Physi	co-chemical wastewater treatment	433		
	Adria	an R. Mels and Eero Teerikangas			
	21.1	Introduction	433		
	21.2	Physico-chemical unit operations	434		
	21.3	Unit operations aimed at particle removal	436		
	21.4	Unit operations aimed at removal of dissolved			
		contaminants	448		
	21.5	References	451		
22		nced oxidation technologies for industrial water reuse	453		
	Alfons Vogelpohl				
	22.1	Introduction	453		
	22.2	Ozone, Hydrogen peroxide	454		
	22.3	Photooxidation	457		

Contents	xi
----------	----

	22.4	Fenton's reaction, Photo Fenton process	459
	22.5	Photocatalysis	463
	22.6	Electron Beam Irradiation	467
	22.7	Sonolysis	468
	22.8	Combination of biological and chemical Processes	468
	22.9		469
	22.10	References	469
23	Indust	rial experience of water reuse by membrane technology	472
		J. Judd	4770
	23.1	Introduction	472
	23.2	Membranes	473
	23.3	Membrane processes	477
	23.4	Case studies	478
		References	487
		0.1.1.1.1.1	
Part	t IV: Te	chnological aspects of closing industrial cycles –	489
C. F	lesource	e recovery and management	491
24	Tech	nologies for nitrogen recovery and reuse	7/1
		Maurer, Jane Muncke and Tove A. Larsen	491
	24.1	Introduction	494
	24.2	Wastewater	502
		Urine source separation	506
	24.4		507
			511
25	Phos	phorus recycling potentials	511
	Dees	Lijmbach, John E. Driver, Willem Schipper	511
	25.1	Introduction	512
	25.2		512
	25.3		514
	25.4	Closing the phosphorus cycle	517
	25.5		521
	25.6		521
	25.7		522
	25.8	Conclusions	522
	25.9	References	344
26	Mat	erial and nutrient recycling and energy recovery from solid	524
		te: a systems perspective	324
	Jan-	Olov Sundqvist	524
	26.1		52 4 525
	26.2	The ORWARE model	323

xii Contents

	26.3	System boundaries in this study	529
	26.4	Description of the scenarios	531
	26.5	System analysis	532
	26.6	Conclusions	540
	26.7	References	541
Part	V: Exa	imples of closed water cycles in industrial processes	543
27	Water	r minimisation and reuse in the textile industry	545
	David	le Mattioli, Francessa Malpei, Giuseppe Bortone	
	and A	llberto Rozzi	
	27.1	Textile and clothing industry	545
	27.2	Characteristics of textile water and wastewater	550
	27.3	Textile wastewater minimisation, treatment and reuse	556
	27.4	Case studies	567
	27.5	References	581
28	Nove	l process on thermophilic conditions opens up new	
	oppor	tunities of integrated white water treatment in recycling	
	mills	 Kidney technology-concept 	585
	Diete	r Pauly	
	28.1	Introduction	585
	28.2	State of the art	586
	28.3	Results and discussion	592
	28.4	Conclusions	601
	28.5	Acknowledgements	602
	28.6	References	602
29	Biolo	gical recovery of metals, sulfur and water in the mining	
	and n	netallurgical industry	605
	Jan V	Veijma, Cris F.M. Copini, Cees J.N. Buisman and	
	Carl	E. Schultz	
	29.1	Introduction	605
	29.2	Sulfate-reducing bacteria	607
	29.3	Biological sulfate reduction technology for metal	
		removal	610
	29.4	Applications in the mining and metallurgical industries	613
	29.5	Acknowledgements	620
	29.6	References	620
30	Solar	photocatalysis: application to the treatment of pesticides in	
	water		623
	Juliai	n Blanco and Sixto Malato	
	30.1	Introduction	623
	30.2	Solar photocatalysis fundamentals	624

		Contents	xiii
	30.3	Experimental systems: technology issues	627
	30.4	Photocatalytic treatment of pesticides	633
	30.5	Case study: recycling of pesticide bottles	642
	30.6	Conclusions	652
	30.7	References	652
31	Water	reuse in greenhouse horticulture	654
	Erik A	A. van Os and Cecilia Stanghellini	
	31.1	Introduction	654
	31.2	Water availability	656
	31.3	Greenhouse horticulture	657
	31.4	Soil-less growing systems	658
	31.5	Disinfection of the nutrient solution	658
	31.6	Conclusions	662
	31.7	References	662
32	The i	ndustrial symbiosis in kalundborg, Denmark – industrial	
	netwo	orking and cleaner industrial production	664
	Noel.	Brings Jacobsen	
	32.1	The Symbiosis at Kalundborg	664
	32.2	Facts	667
	32.3	Reflections	669
	32.4	Lessons learned	670
	32.5	References	671
Index			673