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Models for Disc Infiltrometers

A. W. WARRICK

Department of Soil and Water Science, University of Arizona, Tucson

Disc infiltrometers are popular devices for determining in situ hydraulic properties of unsaturated
soils. This paper compares alternative solutions of Richards’ equation for both steady state and
time-dependent cases. The steady state solutions were in general agreement using alternative
hydraulic conductivity functions of the same capillary length scale. Small-time solutions for the
nonlinear cases were consistent with linear diffusion from a disc source using an average diffusivity
value which is simply related to the capillary length. This offers a refinement over the one-dimensional
sotution for short times in that the geometric effect of the circular source is included. Simulations for
two examples indicate that the approach to the steady state solution may take considerably longer than
what is commonly reported in the literature for field applications.

INTRODUCTION

Disc infiltrometers are becoming increasingly popular for
determining in situ hydraulic properties of soil [cf. Clothier
and White, 1981; White and Sully, 1988; Ankeny et al., 1988,
1991. Smettem and Clothier, 1989; Reynolds and Elrick,
1991]. They are designed to measure intake at a carefully
controlled water pressure within a circular interface at the
soil surface. The water pressure can be slightly positive, but
more often is at a small tension of about 0-0.2 m of water. By
maintaining the entry head at a tension, flow into the larger
macropores can be avoided.

The analysis of data from disc infiltrometers has rested
heavily on the following five equations. The first is an
approximation for early times and assumes equivalence to a
one-dimensional system {cf. White and Sully, 1987, 1988]:

o
—5=0.5 51793 (1)
‘n‘ro

where @ is the flow from the disc infiltrometer (in m3 s '),
rg is the disc radius (in meters), § the sorptivity (in m s ~%5),
and 1 time (in seconds). The sorptivity is dependent upon the
initial water content, the supply water content, and the
diffusivity function and is an integral measure of soil capil-
larity [Philip, 1955, 1969]. Integration of (1) with respect to ¢
results in the cumulative intake per unit area I (in meters).

[ =59 2)

For small times, § is simply the slope of I versus 3.

The third commonly used relationship is for the macro-
scopic capillary length A, [Philip, 1985; White and Sully,
1987. 1988], defined by

A= [Kyei— Kool ™! f "K(h) dh 3)

hdry

where K. and Ky, are the conductivity values corre-
sponding to the supply matric potential 4., and the initial
matric potential /14,,. The approximate relationship of A, to
Sis
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This was proposed by White and Sully {1987, 1988], with 6,
the supply water content and 84;y the initial value. They
considered three hydraulic functions. Warrick and Broad-
bridge [1992] confirmed that 5 = (.55 is a representative
value using four hydraulic functions in addition to those of
White and Sully [1987]. One requirement for equivalence
between parameters of alternative hydraulic functions, as
used by Russo et al. [1991], is that S be the same for equal
Ouets Bary» and K. This will be the case if A./b is equal, as
can be verified from (4) with K. > Ky

Finally, there is the approximation for flow from a disc at
steady state conditions [Wooding, 1968]:

A 4)

4A.

Q= mr§ Kw[l + (5)

Trg

where Q is the flow volume per unit time (in m? s™!) and
K e is the hydraulic conductivity value corresponding to
the water supply. Wooding's solution was based on a hy-
draulic conductivity of the form [Gardner, 1958]

K =K, exp (ah) (6)

with & (in meters) the matric potential, K, (in meters per
second) a constant normally taken as the saturated hydraulic
conductivity, and «a (in m ~!) a constant equivalent to A 1A
refinement of Wooding’s equation for small ary was offered
by Weir [1987]. Consideration of (2), (4), and (5) leads to a
solution for K., provided K, is negligible and that 6,
and 6y, are measured.

An alternative approach based only on Wooding’s solution
is possible when Q values are known for two or more ry
values [Scotter et al., 1982; Yitayew and Watson, 1986;
Smettem and Clothier, 1989; Hussen, 1991]. This allows
K e and A, to be found directly by solving two equations of
the form of (5). If results for three or more ro values are
available, then K., and A, can be evaluated using a ‘‘best
fit’’ procedure. The same principle can be applied for a single
ro value with multiple tensions [Lien, 1989; Ankeny et al.,
1991; Hussen, 1991].

An alternative but necessarily more complex approach
can be based on numerical simulations. Numerous algo-
rithms have been used to model transient movement into a
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TABLE 1. Hydraulic Functions Considered in the Examples

KIK, 0

Gardner [1958] and Russo [1988] exp h*
van Genuchten [1980}

8"‘5“ - - Ol/m)m]Z

[exp (h*/2)(1 — h*/2)]Htm+D
[r + ]h*]“”‘m)]—m

Note that m is a generic parameter and not specific to a single hydraulic function.

uniformly dry soil from point or localized water sources. For
trickle irrigation, finite difference solutions were given by
Brandt et al. [1971] and Lafolie et al. [1989]; van der Ploeg
and Benecke [1974] and Fletcher-Armstrong and Wilson
[1983] used the continuous simulation modeling program;
and Taghavi et al. [1984, 1985] applied finite elements. There
are also more traditional groundwater models, several of
which are reviewed by Lappala et al. [1987] and McKeon
and Chu [1987].

The objective of the study is to compare alternative
solutions for disc infiltrometers. First the utility of the
Wooding [1968] and Weir [1987] solutions and the capillary
length concept will be tested using an alternative conductiv-
ity function [van Genuchten, 1980). Next the small-time
solution for diffusion by Chu et al. [1975], as extended to a
disc by Warrick et al. [1992], will be tested against nonlinear
simulations. Finally, large-time solutions will be examined to
address the question of the time required for infiltration from
a disc to approach steady state.

THEORY

The Richard’s equation describes unsaturated water flow

as
a8 1 a [ ek F] ah\ oK
—:——(rK— +— K —] - — (7
at rar . ar a2 dz 0z

where #1is the volumetric water content, 4 is matric potential
(in meters). r is a radial coordinate. z is depth, ¢ is time, and
K is the unsaturated hydraulic conductivity.

Appropriate initial and boundary conditions for the ten-
sion tnfiltrometer are

h(r. 2. 0) = hyyy 8

hir, 0. 1) = Iy 0<r<ry, )]
ah

—;+l=0 z=10 F>ry (10)

h(r. 2, 1) = hy, PP+l o (1

The solution of (7) subject to (8)-(11) will be a function of r,
z, and 1 as well as a. hy,y, and h,,.

The total surface flux is of particular interest for the disc
permeameter. This may be expressed by

ro ah
Q=217Kwe,f 1-— rdr (12)
0 9z
z=0

, oh
Q=mroKuall - 9z (13)

or

with (0h/dz) the average value of the pressure gradient at the
disc surface.

The two hydraulic functions listed in Table 1 will be used.
In both cases dimensionless matric potentials and water
contents are defined as

h*=ah (14)

=20 15)
_.93—9, (

where « is now a generalized soil dependent constant (in
m~"), 6, is a “‘residual”” water content, and 6, is the
saturated water content. The first set is for the hydraulic
conductivity function of Gardner [1958) with the soil water
characteristic of Russo [1988]. For these the a is simply /A,
by (3). The second set of functions is by van Genuchten
[1980]. The correspondence of a to A, in this case is
implicitly given by (3). Some values are presented in Table 3
following Warrick and Broadbridge [1992]. The product A,
is a function of m, ahy,,, and ah,.e and is generally less than
1 (Table 3).

For the above hydraulic functions, reduced forms of
Richard’s equation are possible in terms of dimensionless
parameters. The mean gradient (3/1/8z) of (13) is indepen-
dent of « provided altye,. ahy,,, and ary are the same. This
is particularly useful in that the dimensionless surface flux
Q* given by

0* = a*Q/K, (16)

will be invariant for steady state conditions provided also
that aliyy, aligy, and ary are the same. If ahgy, is very
small (approaching —=) and ah . is 0, the O* will be the
same provided arg is the same. For example, Q* for a = 1
and ry = 0.1 would be the same as for a=0.1 and ry = 1.
This helps generalize the flow rates which will be presented
shortly.

Chut et al. [1975] considered heat conduction from a half
plane with the remaining half plane thermally insulated. If
we consider a cartesian coordinate system, this is equivalent
to a boundary in the y = 0 plane over which a constant
potential is maintained for x > 0 and which is insulated for
x < 0. The initial condition is a constant potential (different
than the boundary potential), and the thermal diffusivity is
constant. Vauclin et al. [1977] compared the Chu et al.
solution with a numerical solution for two dimensions.
Warrick et al. [1992] developed an approximation for linear
diffusion from a disc source by combining these results with
an asymptotic form for large values of time. A similar
approximation, discussed in the appendix, is

Q1) = 278D r[1 + 025757703

—0.216 exp (—4.017)} u7n
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where

T = Di/r} (18)

The approximation is valid for all times for linear diffusion,
. . 3 — - . .

with D(in m? s ') a constant diffusion coefficient. For small

times the above expression is equivalent to

0.5

gzo 5 8t79%° +0.885
5~ 0. .
'n'ro ro

(19)

and is closely related to the results of Chu et al. [1975] and
of Warrick et al. [1992, equation 34]. Although similar to the
first two terms of Philip’s [1969] solution for one-
dimensional infiltration, here the second term is due only to
geometrical affects and is independent of gravity.

The above relationships suggest an empirical equation for
infiltration from the disc as

= §405 +Q_J; {t+£[1 —exp(—dt)]} (20)
Try d

where ¢ and d are empirical constants and @ is the steady
state value. This relationship has been used successfully to
fit field data by Hussen [1991], who called it a ‘*modified
Horton™’ equation.

NuUMERICAL CALCULATIONS

In order to carry out necessary numerical calculations, a
finite element program ‘‘Disc’” was developed. The finite
element formulation was chosen to allow ease and flexibility
for assigning boundary conditions and the spatial fineness of
the numerical approximations. The procedure used the
Galerkin method of weighted residuals and closely followed
the programs developed by Silva [1990] for infiltration from
an irrigation furrow. A mixed formulation was used for water
content and pressure head, as suggested by Celia and
Bouloutas [1990]. They found that mass conservation was
generally easier to maintain than when using a purely pres-
sure-head formulation. The algorithm can be run in either a
time-dependent or steady state mode.

Initial and boundary conditions along the soil surface are
given by (9) and (10). Along the z axis (DE of Figure 1) the
boundary condition is that of no lateral flow. The other two
boundaries (AB and AE of Figure 1) are more difficult
because they are formally defined only as r> + z? ap-
proaches infinity. These were approximated by

dhlor =0 ?2n

F = Foux

ahlaz =0 (22)

2= Zmax

This assumes that r,, is chosen large enough that lateral
flow at r = r,, is negligible. Also, z,,, must be large
enough that a unit hydraulic gradient is approximated,
although / can vary horizontally along AE.

The generation of nodes was chosen on a variably spaced
grid. The horizontal spacing was fixed for 0 < r < rg
(beneath the disc) and then varied by an arithmetic progres-
sion between ry and r,,,. The number of nodes on the disc
was specified, as well as the total number of horizontal
nodes. The vertical nodes were chosen as an arithmetic
progression by specifying the minimal spacing, the number
of vertical nodes, and z .- This defined all the nodes for the
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flow region, after which triangular elements were formed by
drawing diagonals across the rectangles formed by the
nodes. The program was coded in FORTRAN 77.

Generic errors of the numerical approximations were
considered as follows:

1. Regarding mass continuity, for the time-dependent
cases. water added was tested against the change in storage
and water drained. Typically. the discrepancy was less than
0.1% of the water added. For the steady state examples the
rates of water added and drained were consistent within
three significant digits.

2. For spatial discretization the strategy was to use
successively greater numbers and smaller elements until
inflow amounts did not change. Similarly, successively
smaller time steps were chosen until results did not change
appreciably.

3. Errors arise from assuming a finite flow regime [(21)
and (22)]. The value of r,,, was varied with the results
compared to Wooding [1968] and Weir [1987]as part of
example 1 below. Also, comparisons using (21) to those with
h = —10and — 100 mat r = r,, were made. For ary =0.01,
roax /7o should be large (such as 50); for ary = 1, r .. /rp can
be smaller (such as $).

Other calculations included those for finding the sorptivity
and scaling length A.. The sorptivity was defined by Philip
[1955]. For the integration of the conductivity function of (3)
the conductivity form was used for the wet range (0.95 <
® < 1). For the drier range (@ < 0.95) the equivalent
diffusivity form was used:

jl\’(h) dh = fD(()) de

This avoids undefined values for D as 6 approaches satura-
tion and undefined /1 values as # approaches —.

(23)

Example I: Comparison of Steady State Values

As an overall test of “‘Disc.”” element size, r,,, and Zmax-
several comparisons were made with the steady state solu-
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TABLE 2. Values of 0* From the Finite Element Program, Compared to Results From Wooding

[1968] and Weir [1987] Using a From the Gardner [1958] Conductivity Function

7max/"o
arg bl i0 15 25 50 Wooding Weir
0.01 0.0354 0.0417 0.0403 0.0408
(0.0417) (0.0423)
0.1 o 0.425 0.444 0.454 o 0.431 0.451
: (0.426) (0.454) (0.456)
1.0 7.41 7.46 7.14 7.86*
(7.44) (7.46)

Results in parentheses are from a type 1 boundary condition at r = ¥ max > Others are for a ‘‘no-flow’’

boundary.
*Beyond recommended maximum of ary = 0.8.

tions of Wooding [1968] and Weir [1987] which assume (6).
Calculations were performed with arg = 0.01, 0.1, and 1,
chosen to correspond to a roughly in the range of 0.5-50 m ™!
and ry from 0.05-0.t m. The actual calculations using the
program ““Disc’” were with ry = 1 and « chosen appropri-
ately. Most of the tests were with a total of 2500 nodes (50 x
50). For the r direction, 15 nodes were equally spaced on the
disc, with the remaining 35 nodes located by following an
arithmetic progression to r,,. The smallest z interval was
the same as the smallest r interval (r4/25); the other 48 nodes
were at intervals following an arithmetic progression to z =
Zmax = T'max- The resulting dimensionless Q* = «2Q/K, are
given in Table 2 for several rq,, /r, ratios. The Q* increase
as ary gets larger. Also, as r,,, /ry gets larger, the 0* tends
to increase toward a maximum for a given ary. Generally, as
rmax iNCreases, results for the no-flow condition at r = r,,,
are equivalent to those for a head-specified boundary condi-
tion with h at r = r_,  chosen at —100 m.

Wooding {1968] and Weir [1987] used a dimensionless flux
given by

0
- (24)
‘)‘cchtrl)
or
*
F= 1Q (25)
Q-A(.ro

Wooding’s relationship (5) is equivalent to F = F,, with
Fy=4+2rma (26}
where
a=0.5rgr" 27)

For small g, values of Fy, approach 4, which would be the
value if capillarity totally dominated over gravity. For large
a the result approaches that for one-dimensional flow.

On careful examination, Weir [1987] found F w to be
somewhat inaccurate for small a. He suggested an alterna-
tive approximation when a < 0.4 as

4% sin’ a

Fy=
Y™ aw sin (a) cos (a) + 2a sin’ (@) In (a) - 1.073a>

(28)

Results based on the Wooding [1968] and Weir [1987]
relationships are presented in Table 2. Generally, they agree
with the finite element values. The largest value of ary = 1
corresponds to @ = 0.5 which is just above Weir’s cutoff of
a = 0.4. Weir pointed out that Fy, is too small for small ar,
and that the finite element values are in line with his
numerical results (especially his Table 1). On the basis of the
results, values of r,,, /ry for other calculations were chosen
as 25-50 for smaller values of ary (and A 'rq) and 5-15 for
the larger values.

The choice of A, = a™!, where « is from the Gardner
[1958] conductivity function (6), has been put forth as a
generalization, allowing (5) [Wooding, 1968} and related
formulas to be applied for other conductivity functions. We
now directly compare steady state inflow rates calculated
using van Genuchten’s {1980} characteristic curve with those
based on A,.. Values of m for van Genuchten [1980] functions
of 0.3, 0.5, 0.7, and 0.9 were chosen. These represent a wide
range of conditions {(m is always between 0 and 1). The
values of the integral aA., where now « is from the van
Genuchten relationships, are a function only of m, ah gy
and ah,.,. The ai_ values for ahgy = —= and ahyy = 0
were calculated by direct integration. Additional values are
given by Warrick and Broadbridge [1992]. The values in-
crease from 0.188 at m = 0.3 to 0.875 at m = 0.9, indicating
that the corresponding « for Gardner’s [1958] equation are
larger than those from van Genuchten’s relationship for the
same A, (see Table 3).

Calculations for Q* were performed with ary = 0.01, 0.1.
and I, where now « is from the van Genuchten [1980]
relationship (Table 1). The 0* behaves similarly to those for
the Gardner [1958] model. Smaller ar, values correspond to
smaller O* values. As m gets smaller, Q* also tends to
decrease. This is consistent with the notion that Q* de-
creases as A" 'rg gets smaller.

Values of F from (24) are presented in Table 3 to facilitate
ease of comparisons with F,, (Wooding) and F* (Weir).
Also, ratios of F/F,, for a > 0.4 and F/F*, for a < 0.4 are
given. If the integral relationship (3) totally captured the
steady infiltration for the van Genuchten conductivity func-
tion, the F/F,, or F/F%, would be 1. As it is, the values tend
to be between 0.80 and 1.4, with the smallest ratios corre-
sponding to the smaller m. For the moderate values of m =
0.5 and 0.7, F/Fy or FIF*, is between 0.98 and 1.2.

The steady state flow rate due to capillary forces, derived
from (5), is
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TABLE 3. Dimensionless Disc Infiltration Rates for Steady State Conditions Using
van Genuchten Functions
FIFy
or
m ai, arg o* A rg F a Fw Fw FIFw  QplQ
03 0.188 0.01 0.00751 0.00188 3.84  0.0266 4.17 430 0.928 1.00
0.1 0.0936 0.0188 528 0.266 567  6.07 0.820 1.24
1.0 3.17 0.188 17.7 2.66 20.7 n.a. 0.814 4.22
0.5 0.405 0.01 0.0166 0.00405 4.25 0.0124 4.08 3.16 0.987 1.02
0.1  0.203 0.0405 5.14  0.123 478 3.08 1.02 1.25
1.0 486 0.405 11.9 1.23 11.8 n.a. 1.02 3.00
0.7 0.637 0.01 0.0267 0.00637 433 0.00785 4.05 411 1.02 1.05
0.1 0328 0.0637 5.27 0.0785 449 173 1.08 1.29
1.0 7.04 0.637 10.8 0.785 893 n.a. 1.23 2.76
0.9 0.875 0.01 0.0372 0.00875 447 0.00571 4.04 1.09 1.04 1.06
0.1 0.466 0.0876 5.44 0.0571 4.36 457 1.17 1.33
1.0 933 0.875 8.57 0.571 7.59 n.a. 1.40 2.67
Here n.a. means nonapplicable.
Op = 4K e oo (29) the Chu et al. [1975] correction from (19), and *“‘linear

which is valid for all conductivity functions for K. >
Kg4ry. A comparison of (24) with (29) reveals that F = 4 for
all hydraulic conductivity functions and will be equal to 4 if
gravity is neglected. Values of /@ are included as the final
column of Table 3. For small ar, values, Q approaches Qp,
and the ratio is close to one.

Example 2: Infiltration at Small Times

Simulations for small-time infiltration were performed
using the simple one-dimensional expression (2). Also, sim-
ulations of the constant D were performed using approxima-
tion (16) as well as the nonlinear numerical model. Soil
parameters are given in Table 4. For the first comparison
consider the hypothetical loam of Warrick er al. [1985] with
ro = 0.1 m. The sorptivity value was determined directly to
be § = 1.21 x 107* m s7%°. An average value of D is
defined as

wel
Davg:(owet_edry)_lj D(8) df 30)

dry

(Other average values of D could also be used, for example,
the weighted mean of Philip [1969].) From (3) and the basic
definition D = K(dh/d8), D, is

Davg:(ewel_ Bdry)_l(Kwet—Kdry))\c (3[)

From Table 3 we have A a = 0.405. Thus if K., = K, and
K4y = 0,then D, is 6.94 X 1074 m= s~ ".

In Figure 2a the flow value per unit area () is plotted as a
function of "2 using the one-dimensional relationship (1),

diffusion” from (17). Also, the finite element result is plotted
on Figure 2a. The finite element mesh was defined by 2500
nodes, 50 in the r and 50 in the z direction. In the r direction,
15 were equally spaced on the 0.1-m disc and the other 35
defined by arithmetic progression to rp,, = 10ry = 1. The
minimum z spacing was the same as for the disc node
spacing (0.1/15 m). and the other 48 depths increased as an
arithmetic progression to z ., = 10ry = 1 m. The values of
At began at 0.25 s and were increased geometrically to 300 s.
Results for the numerical solution start out very close to the
three analytical curves. The values quickly exceed the
one-dimensional solution but follow the two-term relation-
ship (19) a bit longer. For larger values the results exceed the
three-term linear diffusion results (17) but generally follow
much closer.

As the second comparison for small time we choose the
silt loam of Parker et al. [1985] for which the *‘Gardner-
Russo’’ parameters from Russo [1988] are listed in Table 4.
Calculations are for two h,., values; 0 and —0.15 m.
Corresponding S values are 1.71 X 1073 and 1.42 X 103 m
s705 respectively. As A, = a” !, D is easily found as 2.69 X
1075 and 1.89 x 10" m? s~} from (31). Results are plotted
as before, for both /1, = 0 and /e, = —0.15, in Figure 3a.
The early time values are very close to all of the theoretical
curves. The finite clement quickly rises above the one-
dimensional results. follows along the Chu et al. [1975]
correction until about 7%° = 10, and then remains reasonably
close to the three-term *‘diffusion’ results for the duration of
the plot. The plot also demonstrates that a smaller infiltration
rate occurs for the tension (/1,,,, = —0.15 m) conditions.

The final short-term plot (Figure 4) shows results for the

TABLE 4. Soil Parameters Used
Reference Functions a, m™' m 0, o, K, ,ms™!
Loam Warrick et al. {1985} vG 1.0 0.5 0.45 0.1 6 x 1076
Silt loam Parker et al. [1988] GR 2.38 514 0.388 0.154 15x107°
and Russo {1988]
Yolo light clay  Moore [1939] and VG 1.5 0.5 0.495 0.124 12 x 1077

Warrick et al. {1985]

VG, van Genuchten [1980); GR, Gordner [1958] and Russo [1988}.
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Fig. 2. (a) Small-time infiltration plot. (b) Intermediate-time infil- Fig. 3. (@) Small-time infiltration. () Intermediate-time plots for

tration plot for the loam of Table 4 (ry, = 0.1 m).

Yolo light clay. The S and D were found as 1.54 x 107 m
s7% and 8.95 x 107% m? s™'. For this case, infiltration is
slower, and all of the curves are reasonably close together.
However, for larger times the results from the finite element
solution are considerably closer to the linear diffusion re-
sults. For all intents and purposes the three-term and two-
term ““Chu et al.”’ [1975] solution are the same at this scale
and are plotted as one curve.

Characteristic times fgeom and f,,, were proposed by
Philip [1969] to estimate when the three-dimensional geom-
etry or gravity would dominate the flow process. These may
be written as

tgeom = ro/D (32)

Ky 2
tgrav = 33
g (cht) 3)

The extended period over which the one-dimensional ap-
proximation for the Yolo holds is consistent with the large
values of #geom and f,,,. For tgom the value is about 30
hours compared to less than 1 hour for the other soils.

silt loam of Parker et al. [1985) and Russo [1988].

0.005
eooos Finite Element ?
7 1—-Dimensional ’
—— - Chu et al. and 4
0.004 A Linear Diffusion o’
4 //
7
7
. 0.003 - 52
é | o
9,
_ o
0.002 - &
0.001 A
0.000 T T T T T
0 10 20 30

Sart (1) (s*° )

Fig. 4. Small-time infiltration plot for the Yolo light clay.
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Example 3: Medium- and Large-Time Results

The results using the linear diffusion expression (16) and
the finite element were compared in Figure 26 for an
*‘intermediate’’ time period taken arbitrarily as 0-10,000 s.
The comparison shows reasonable agreement even though
gravity is not included in the linear diffusion term. For a
longer time period (0.01 to 10 hours) the ratio of the flow rate
Q and the steady flow rate Q,, is given in Figure 5. The
decay is quite slow but eventually Q reaches 1.2 and 1.05 of
the final Q,; after 0.5 and 13.5 hours, respectively.

For this example, #,cor, is 0.4 hours and 7,,, is 11.3 hours.
Also, we can compare these results to Figure 4 of Pullan
[1988]. For our case the time to reach 1.05 of the final flux is
approximately

1=0.25 G, 34)

thay = 41 /(D) (35)

Using D = 6.94 X 10 ® m? s ™7 and A, = 0.405 gives grav =
8.4 hours or r above is 2.1 hours. This value was checked
also by the finite element program, resulting in a value of 2
hours for Q to reach 1.05 Q, for the linearized case. For 1.2
Q. the time was approximately 0.3 hours. These values are
repeated in Table 5.

Similar nonlinear finite element results are found for the
silt loam of Parker et al. [1985] (Table 4). For the source
potential at both 0 and —0.15 m the nonlinear solution was
tracked by the linear diffusion model, which does not include
gravity from 0-10,000 s (see Figure 3b). Results for longer
times are given as Figure 5 and in Table 5. For the nonlinear
case, times of 4.4 and 0.4 hours were required to reach 1.05
and 1.2 times the final intake rate. The limiting intake rate
6.61 compares to values, based on (25) and (27), of 6.35 and
6.74, respectively. For the linearized case the times were
approximately 0.6 and 0.1 hours. Pullan’s [1988] results for
1.05 from the final rate (his Figure 2) is approximately 0.25
lsav again, where now tarav = 2.3 hours, which is in
agreement with the linear, finite element results. For the
linearized case the times were approximately 0.6 and 0.1
hours.

Comparisons can also be made for the time {p to reach

2.0
1.5 1
5
H
o 1.0
~
o e
0.5
Loam
E -~ — Sit Loam
0.0 T T T T 1T
0.01 0.1 1 10
t (h)
Fig. 5. Decay of flow rate for the loam and silt loam of Table 4.
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TABLE 5. Times to Reach Within 1.05 and 1.2 Times the
Steady Infiltration Rate

!1.05 112,
hours  hours
Loam* (Q, | 7§ K o] = 6.45, toeom = 0.4 hours,
Lorav = 11.2 hours)
Nonlinear 13.5 0.5
Linez‘ir (A, = 0.405m. D = 6.94 x 107% m?
s
Finite element 2.0 0.3
Pullan [1988] 2.1
Silt Loam® (Q {3 K ver] = 6.6, toeom = 0.1 hours,
Lorav = 3.6 hours)
Nonlinear 4.4 0.4
Linear (D = 2.69 x 107° m® s™))
Finite element 0.6 0.1
Pullan [1988]) 0.6

*{Warrick et al.. 1985].
t{Parker et al.. 1985: Russo, 1988].

1.05 O, on the basis of a surface, hemispherical source
[after Philip, 1986, Figure 4], also for linearized conditions.
For both of our last two examples, @ = 0.5rgA.! = 0.12.
From Figure 4 of Philip we read 15 = 0.4 1,,,. Thus 1y is
(0.4)(11.2) = 5 hours and (0.4)(3.6) = 1.5 hours. These fall
between the linear and nonlinear simulations both for the
loam and silt loam. (If “*a’" is chosen so as to give the same
surface area for the hemisphere as for the disc, then 1 will
be reduced to about 0.3 14,,).

DiscussioN

Some generalized solutions for disc infiltrometers have
been examined. In particular. we have assessed the applica-
bility of the Wooding [1968] analysis for steady state rates
for an alternative hydraulic function as well as the applica-
tion of the small-time one-dimensional diffusion relation-
ships and predictions of times necessary to approach steady
state.

The steady state flux rate calculations for the van Genu-
chten {1980] conductivity function were from 80-140% of
those calculated using the same A, in the Wooding [1968] and
Weir [1987] relationships. Matching A, is nearly equivalent
to matching S, as done by Russo et al. [1991]. Whether this
is sufficiently accurate depends on the application, but
certainly it would be for many purposes. For smaller discs
the values of steady flow rate @ for the van Genuchten
function tends to be smaller., and conversely, for larger arg
the values are as large or larger. As r;, becomes small.
gravity becomes less of a factor and Wooding’s relationship
and all conductivity relationships approach the flow rate
QD = 4cht’\cr()'

The short-term analytical refinements to the one-
dimensional solution are from a recent approximation for
diffusion from a disc by Warrick er al. [1992]). This is based
on the solution by Chu et al. [1975] for a two-dimensional
edge effect. Of the three cases considered, the refinement
brought the analytical results much closer to the simulated
disc results than the one-dimensional solution alone. This
would allow a longer range of applicability for small-time
results, in fact, the linear approximation tended to be rea-
sonable for time as large as 3 hours in the two cases
considered. The correction terms are easily applied and can
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be expressed in terms of only the sorptivity and initial water
supply contents by (4), (19), and (31):

0.885p%357
r()(ewet - edry)z

Of course, the soil, boundary conditions, and initial con-
ditions control the time to approach steady state fiow. For
the two examples considered, 4 and 13 hours were required
to approach 1.05 of the final infiltration value, which is the
same order of magnitude as the ?grav Used by Philip [1969] of
3.6 and 11.2 hours. These values are considerably longer
than the 0.6 and 2 hours that were the approximate time for
the linearized solution with gravity. For the numerical
examples here it would be extremely difficult to ascertain
when true steady state was reached without knowing the
limiting values (see Figures 2b and 3b). This suggests that
the theoretical time for approaching steady state may be
longer than typical experimental times reported of approxi-
mately 0.2-2 hours [White and Sully, 1988; Smettem and
Clothier, 1989; Ankeny et al., 1990; Thony et al., 1991].
However, the reported experimental times are consistent
with the observation that S tends to be smaller in the field
than for repacked laboratory columns; hence a smaller ¢ rav
for the field would follow. Sully and White [1987] calculated
the to of Philip [1986], the time to approach 1.05 of the
steady state value, for 17 scattered field sites. The geometric
mean value was less than two hours, but the largest was 31
hours.

The emphasis has been to compare simplified versus
comprehensive calculations. The next apparent step is to use
this information to design more complete schemes for pa-
rameter identification.

Y
—5=0.55:7%% +
mry

(36)

APPENDIX: FLOW RATE FOR LINEAR DIFFUSION
From A Disc Source

Warrick et al. [1992] present an approximation of the
time-dependent flow rate for linear diffusion from a disc
source. The approximation is presented graphically in Figure
6 but is difficult to present algebraically. Consequently, a

15
4 eocoe Old form
| New form
104
(=] B
o
~
o
54
0 T T T T T T
-3 -2 -1 0 1

log (Dt/ro® )

Fig. 6. A comparison of the old form of Q/Qp tWarrick et al.,
1992] to the new approximation (16).
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second function of the form

Q=A+BT % + Cexp(—ET) 37

was used. Values of A, B, and C are chosen to give the
correct large-time solution and to satisfy (18). The large-time
solution may be given from (28) or equivalently by

QD= zﬂO.SSDO.SrO (38)

Thus only E was best fit, giving E = 4.01 in (37). The two
relationships are in excellent agreement, as shown in Figure
6, with a coefficient of determination above 0.999 for the
points shown. The slight “*dip’’ in the old approximation as
T = 1 is close to where two branches were matched by
Warrick et al. The Q values at the matching points were
continuous but the slopes were not.
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