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A complete reexamination of Sudicky’s (1986) field experiment for the geostatistical characteriza-
tion of hydraulic conductivity at the Borden aquifer in Ontario, Canada is performed. The sampled
data reveal that a number of outliers (low In (K) values) are present in the data base. These low values
cause difficulties in both variogram estimation and determining population statistics. The analysis
shows that assuming either a normal distribution or exponential distribution for log conductivity is
appropriate. The classical, Cressie/Hawkins and squared median of the absolute deviations (SMAD)
estimators are used to compute experimental variograms. None of these estimators provides
completely satisfactory variograms for the Borden data with the exception of the classical estimator
with outliers removed from the data set. Theoretical exponential variogram parameters are determined
from nonlinear (NL) estimation. Differences are obtained between NL fits and those of Sudicky (1986).
For the classical-screened estimated variogram, NL fits produce an In (X)) variance of 0.24, nugget of
0.07, and integral scales of 5.1 m horizontal and 0.21 m vertical along A-A’. For B-B' these values are
0.37, 0.11, 8.3 and 0.34. The fitted parameter set for B-B’ data (horizontal and vertical) is statistically
different than the parameter set determined for A-A'. We also evaluate a probabilistic form of Dagan’s
(1982, 1987) equations relating geostatistical parameters to a tracer cloud’s spreading moments. The
equations are evaluated using the parameter estimates and covariances determined from line A-A’ as
input, with a velocity equal to 9.0 cm/day. The results are compared with actual values determined
from the field test, but evaluated by both Freyberg (1986) and Rajaram and Gelhar (1988). The
geostatistical parameters developed from this study produce an excellent fit to both sets of calculated
plume moments when combined with Dagan’s stochastic theory for predicting the spread of a tracer

cloud.

INTRODUCTION

Sudicky [1986] described the results of a sampling program
in which a large number of hydraulic conductivity measure-
ments were taken along two transects at the site of an
elaborate tracer test performed in the Borden aquifer in
Ontario, Canada. These measurements, combined with a
detailed evaluation of the dispersion characteristics of the
injected tracer cloud [Freyberg, 1986], provided a unique
opportunity to examine the validity of modern stochastic
theories of contaminant transport that have emerged over
the past decade. Based on the field data and subsequent
geostatistical inferences, Sudicky [1986] computed mean
values, variances and integral scales for the underlying log
conductivity distribution of the Borden aquifer. Then, by
using these quantities as input to stochastic transport theo-
ries by Dagan [1982, 1987] and Gelhar and Axness [1983],
the predicted field-scale flow and dispersion parameters
were shown to be consistent with the observed evolution of
the tracer plume as interpreted by Freyberg [1986]. The
geostatistical interpretation performed by Sudicky [1986],
however, did not elucidate the uncertainties associated with
estimating critical parameters such as the log conductivity
integral scales. Subsequent comments on Sudicky’s [1986]
work can be found in the works by Kemblowski [1988],
White [1988], Molz and Giiven [1988] and Sudicky [1988].
Other discussions centering on the applicability of various
competing theories to explain the observed tracer behavior
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can be found in the works by Naff et al. [1988, 1989}, Barry
[1990], Dagan [1989a, 1990], Neuman and Zhang [1990}1, and
Zhang and Neuman [1990].

In view of the fact that estimating the parameters describ-
ing the spatial variations of hydraulic conductivity is a
challenging problem, even when many data are available,
our purpose is to systematically examine the Borden hydrau-
lic conductivity data with particular emphasis on how vari-
ous assumptions and modes of interpretation might affect the
values of inferred parameters. In particular, we address and
quantify the uncertainty in the values of the geostatistical
parameters and demonstrate how this uncertainty manifests
itself when predicting the spread of the Borden experimental
plume in a probabilistic framework. This latter aspect is
extremely important when using stochastic transport theory.
Indeed, Dagan [1988] emphasized this need, and to our
knowledge, our work represents the first time that the effects
of parameter uncertainty in stochastic dispersion models has
been quantified on the basis of field data. We also show the
effects of using different variogram estimators on the sam-
pled data, and how truncation of the experimental vario-
grams influences inferred geostatistical parameters. Neither
of these topics were addressed in the second author’s
original work [Sudicky, 1986]. Other issues discussed in this
paper relate to the generality of the lognormal assumption
for hydraulic conductivity which is commonly invoked in
stochastic groundwater flow models and the fact that it is
unlikely that one can unequivocally distinguish between
various competing variogram models (i.e., spherical, expo-
nential, Bessel, etc.) even when very large amounts of data
are at hand. This, in our opinion, will have some influence on



534 WOODBURY AND SUDICKY: GEOSTATISTICS OF THE BORDEN AQUIFER

t.24 BORDEN AQUIFER: COMPLETE SET
1.0 A
2 0.8 |
8 M
= 0.5 - 1]
a n
= [
& 0.4
0.2 4
0-0 T T _mrlhn-r] 1 T T 1 T
T10.0 -9.0 8.0 7.0 <60 -5.0 -40 -3¢ -2.0
Ln (K)
Fig. 1. Histogram of entire data base, Borden aquifer [Sudicky,

1986].

how stochastic flow and transport theories will evolve in the
future. In summary, the following points are addressed in the
analysis presented here: (1) the lognormality assumption of
the sampled hydraulic conductivity data, (2) maximum lag
values used in autocorrelation or variogram calculations and
the effect of lag distance truncation on variogram fitting, (3)
the method of computing variogram values, and linear ver-
sus nonlinear fitting procedures to infer geostatistical param-
eters, and (4) the influence of uncertainty in the values of the
geostatistical parameters on plume spreading.

A logical approach to geostatistics has been suggested by
Armstrong [1984] and these fundamental steps are taken in
subsequent sections in this paper. These steps are (1) data,
(2) experimental variogram, (3) variogram model, and 4
application:

1. The type of distribution and the mean and higher
moments of the data are determined, and outliers identified.

2. The experimental variogram is computed. An appro-
priate estimator must be chosen, for example, classical
[Matheron, 1963] or Cressie and Hawkins [1980],

3. Theoretical variogram parameters are sought from the
experimental variogram. Important decisions are drift iden-
tification, and type of theoretical model, method of paramet-
ric estimation and length of experimental variogram record
used.

4. The final step is in the application of the material
established from steps 1-3. These applications could be, for
€xample, kriging or stochastic models.

These points will be discussed in some detail and our final
application of the geostatistical parameters for the data is the
determination of, and a comparison with, the spatial vari-
ance tensor calculations from the natural gradient tracer
experiment at the Borden aquifer.

THE LOGNORMALITY OF Hybprauric
CoNDuCTIVITY

As is common in stochastic groundwater analysis, hydrau-
lic conductivity values are assumed to follow a lognormal
distribution and a logarithmic transformation is made such
that the data in this transformed Space are normally distrib-

uted [Freeze, 1975]. For example, with ¥ = In (K), K being
the hydraulic conductivity,

1 {—(Y—<Y>)ZJ
exp (1)

Q2m12s 20?

P(Y)=

defines a Gaussian probability density (pdf) describing the
random variable Y where ois the standard deviation of Y and
(Y) is its mean. A chi-square goodness-of-fit test was per-
formed by Sudicky [1986] based on a subset of data having a
prescribed minimum separation between neighboring mea-
surements such that independence could be assumed. These
spacings were 0.25 m vertically and 2.0 m horizontaily.
Sudicky {1986] found that P(Y) given by (1) was not unrea-
sonable; however, a number of outliers are present in the full
data set. Because of these outliers, an exponential distribu-
tion for Y is as likely a candidate for a pdf as a normal one.
Figure 1 shows a frequency density histogram for all of the
regularly spaced In (X) data used to produce Figures 6 and 7
of Sudicky [1986], which show hydraulic conductivity pro-
files and cross-section contours of In (K). It can be seen that
a number of low Y values are present (i.e., ¥ < —6.5, K <
1.5 X 107 cm/s). As will be shown later, these low values
cause difficulties in estimating both variogram and popula-
tion statistics.

In order to examine sample statistics from a data set that
is suspected of being correlated, an alternative to the selec-
tion procedure used by Sudicky based on a minimum spacing
is to draw a sample from the population at random [e.g.,
Smith, 1981]. Figure 2 shows a histogram of the probability
densities for a random sample comprising 100 points along
with the continuous forms of the normal and exponential
distributions. The exponential distribution is defined as
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Fig. 2. Frequency density histogram and plotted theoretical
curves for normal and exponential pdfs for a random sample of the
entire data set.
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Each of the above three formulas will be applied to calculate
an experimental variogram describing the Borden aquifer
data.

The estimator of the autocorrelation function used by
Sudicky [1986] in his equation (6) is a biased estimator
[Jenkins and Warts, 1968, Pp. 174-175; Smith, 1981] because
of the normalization with respect to 1/n instead of Un(h).
This estimator tends to reduce the mean square error and
smooth variations at large lags although it is asymptotically
unbiased as n — w [Jenkins and Watts, 1968]. Because n(h)
is relatively large for the lag distances used by Sudicky
(1986], he found both the biased and unbiased estimator
yielded similar results. The implication of using this autocor-
relation estimator is that the integral scales estimated from
such calculations may appear artificially shorter than unbi-
ased estimators.

DRIFT ESTIMATION

Prior to presenting the results of the variogram calcula-
tions, let us examine the possibility of a drift or trend in the
In (K) data. An apparent anomaly in the large-time plume
behavior of the Borden tracer experiment was noted by
Freyberg [1986], and Molz and Giiven [1988] suspected this
behavior to be the result of some form of nonstationarity
being present in the hydraulic conductivity field. Sudicky
[1988], in response to the comments raised by Molz and
Giiven [1988], suggested this behavior was the result of a
nonstationarity in the flow boundary conditions rather than
the hydraulic conductivity. We examine the possibility of
drift in the following sections by statistical methods.

It is common in practical geostatistical applications to only
use (or recognize) that part of the variogram in which {4 <
L72, with L being the length of the transect sampled, such
that, say, a(k) > 30 pairs [Journel and Huijbregrs, 1978, p.
194], and where a trend or “dnft” is not suspected (P. K.
Kitanidis, 1989, personal communication). Figures 2, 6, 7
and 9 of Sudicky [1986] show the location, dimensions, and
partial summary statistics of the original survey. The
transects are 19 m long for A-A’ and 13 m long for B-B’.
Vertical depths for both transects are 1.75 m. We point out
that in Figure 10 of S udicky [1986], only results for data pairs
having lags in the range of 0-10 m are presented for the
horizontal direction and 0~0.5 m in the vertical direction
partially in accordance with the above mentioned criteria.

Figure 9 of Sudicky [1986] shows the sample means for
each core plotted against horizontal distance for both the
A-A’ and B-B’ directions. Sudicky [1986] originally argued
that there was little evidence for a trend in log conductivity
with depth and this argument was supported by several fully
penetrating exploratory cores obtained nearby [Mackay et
al., 1986]. It is, however, possible to perform statistical tests
to confirm or repudiate if a trend indeed exists in the mean
vertical In (K) profiles. The philosophy behind the tests is
this; first, we assume that each core consisting of vertical
data is viewed as a realization of a stochastic process.
Second, we adopt the null hypothesis or the hypothesis that
the observed data are drawn from a specified population.
Third, we apply a X2 test to confirm the null hypothesis.
Such a test can be defined as [e.g., Tarantola, 1987, p. 213]

X7= (Y = (Y)T[CI~ (Y - (v)) (7)

If x} exceeds a value for a specified degree of freedom and

_ confidence level, then the null hypothesis is rejected and,

therefore, the observed values to not belong to the corre-
lated population thought to be applicable. However, it
should be noted that the test is sensitive to outliers in the
data as there is an implicit assumption of normality in the
formalism. It is assumed here that the data Y are measured
(or determined) without error. For the vertical data, the
parameters in (7) are a constant mean value vector of (Y) =
—4.63 and a covariance matrix C generated from an expo-
nential covariance function,

2 ~hi 2
Ci=oyexp (T) + g8y (6]
where o7 is the variance, 0§ is the “‘nugget”’, and 8y = 1if
{ = j and zero otherwise. Also, h,»j is the vertical distance
between points /, j and A, is the vertical integral scale. In the
tests we use a In (K) variance of 0.28 m?, a nugget of 0. 10 m?
and an integral scale of 0.12 m. These are Sudicky’s original
values and are assumed correct initially. The test (7) is
applied on each set of vertical cores on each transect. There
are 20 cores on line A-A’ and 13 cores on B-B’. Each core
contains 36 values of In (K), separated at 0.05 m.

The results indicate that all vertical cores passed the
above chi-square test using Sudicky’s [1986] original param-
eters. Hence the data can be statistically represented as a
multivariate Gaussian pdf with an exponential correlation
structure. It has been assumed here that Sudicky’s original
population parameters are correct in the analysis.

The analysis is repeated for new population parameter
values determined in subsequent sections (see Table 4). In
this test we first screen outliers from each line (values of log
K lower than —6.5). All cores pass the test. We then repeat
the test without screening these low values, and eight cores
on section A-A’ and two cores on B-B’ fail the test. Hence,
it is concluded that the outliers do influence the test results
and if we are not careful in accounting for their presence the
exponential model might be rejected on some cores. How-
ever, by effectively rejecting their presence, tests indicate
that the assumed exponential form of the covariance func-
tion can be safely assumed. Note that this covariance does
not admit a trend in the data. This subject is discussed at
greater length in a subsequent section.

EXPERIMENTAL VARIOGRAM CALCULATIONS

Figure 3 shows experimental variograms for section A-A’
in the vertical direction. Line A is the classical estimate, line
B is the Cressie/Hawkins estimate and line C is classical
estimate with outliers removed. Here, In (K) data less than
~6.5 are removed from the data set, based on the Chauvenet
criterion [Neville and Kennedy, 1964]. The remaining two
solid lines are 95% confidence intervals about line C. These
intervals should be viewed as qualitative as they are based
on power-variogram models {Journe! and Huijbregts, 1978,
p. 193]. Line D is the SMAD estimate. As shown in Figure 3,
lines A, B and D are affected by the outliers. Note the
difference in variogram values for all lags for lines A and C.
Line B, the Cressie/Hawkins estimate, is somewhat lower
than line A and is apparently less affected by outliers at
shorter lags. Line D is the SMAD estimate. Note that the
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The plotted probability density functions are based on the
sample statistics provided in Table 1a. The sampled data are
combined into 20 groups. Note in Figure 2 that the sample
data appear to be more peaked than the normal pdf. Because
the presence of outliers (Table 15, Figure 1) suggests that an
exponential pdf may also produce a satisfactory fit to the
data, a chi-square test was carried out to determine the
goodness-of-fit of each of the two distributions.

Table 2 summarizes the test results for the frequency
histogram shown in Figure 2 and using the sample statistics
given in Table 15. The computed probabilities in Table 2
represent the probability that the null hypothesis, or the
hypothesis that there is no statistical difference between
sample and theoretical quantities, is satisfied. The lowest
probability of assuming the null hypothesis is correct is
8.26% for the exponential distribution. Therefore, both
distributions satisfy the data.

The inability to unambiguously distinguish between the
various competing pdfs to describe hydraulic conductivity is
disturbing considering the sample size and the intense field
efforts required to collect such data. Our finding is not
without precedent. Smith [1981], for example, concluded
that the hydraulic conductivity of the Quadra sand at a site
near Vancouver, British Columbia, could be described
equally well by either a normal or a lognormal pdf.

The analysis demonstrates that assuming either a normal
distribution or exponential distribution for log conductivity
at the Borden site is appropriate. Thus, it seems that the
standard practice in groundwater hydrology of assuming that
spatial variations in hydraulic conductivity follow a lognor-
mal distribution is subject to debate and that stochastic
theories constrained by such an assumption may be re-
stricted in their general applicability.

The presence of ‘‘tails’” in a presumed normal (i.e., Y = In
(K)) pdf can have significant consequences on the inferred
contaminant transport characteristics of the subsurface. In
the case of the Borden aquifer where the so-called outliers
comprised several low hydraulic values, these low values
could restrict vertical motion, thereby diminishing vertical
mixing processes. On the other hand, the neglect of a few
high hydraulic conductivity lenses mistakenly viewed as
outliers in a standard parametric statistical analysis can
introduce a bias that obscures the possibility of rapid inter-
connected transport pathways in an aquifer. These senti-
ments are reflected in the non-Gaussian approach to uncer-
tainty in spatial data suggested by Journel [1990]. Another
consequence of several extreme values of hydraulic conduc-
tivity in a collection of measurements is their impact on
variogram estimation.
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TABLE 15. Borden: Randomly Sampled Data Set Sample
Statistics for Screened Data Set

Parameter Estimate
Mean —-4.62
Median -4.60
Average deviation 0.412
Standard deviation 0.511
Variance 0.261
Squared average deviation 0.170

Sample size of 100 values randomly sampled out of a population of
1188. Log conductivity values less than —6.5 removed from data set.

EXPERIMENTAL VARIOGRAM ESTIMATION

Rather than present experimental autocorrelations of In
(K) as a function of separation distance, experimental semi-
variograms are adopted here to avoid normalizing second-
order moments of the data by an assumed variance. Because
there is much debate about which variogram estimator is
most appropriate, particularly if the data are corrupted by
noise or outliers [Armstrong, 1984}, several estimators are
used in the analysis presented below. The “‘classical’” ex-
perimental semivariogram estimator, y*(h), hereinafter
called the variogram, is [Matheron, 1963]

nth)

* = N — i 2
y*(h) 0 2 [Y(x) — Y(x; + h)] @)

i=1

where n(h) is the number of data pairs separated by lag
distance &, and Y(x;) are measured values of log conductivity
at coordinates x;. The above equation has been shown by
Omre [1984] to be an optimal estimator of the variogram
provided that the pairs Y(x;) and Y(x; + h) are bivariate
normal and independent. The Cressie-Hawkins estimator is
[Cressie and Hawkins, 1980]

nlh)

y*h) == — 2 |¥(x) — Y(x; + B)| 2

[0.457
2l n(h) [ _,

+ 0.494/n(h)] (5

This estimator is considered ‘‘robust’ in that it reduces the
effect of outliers in the data. Another robust estimator is the
squared median of the absolute deviations (SMAD) estima-
tor given by [Dowd, 1984]

y*(h) = 2.198 x [median| Y(x;) — ¥(x; + A)|]? (6)

TABLE la. Borden: Randomly Sampled Data Set Sample TABLE 2. Borden: Randomly Sampled Data Set x? Tests on
Statistics Normal/Exponential Hypotheses

Parameter Estimate Statistic Value
Mean ~4.68 x° (normal) 13.81
Median —4.63 Probability (nuil) 16.5%
Average deviation 0.464 x* (exponential) 20.53
Standard deviation 0.597 Probability (null) 8.26%
Variance 0.356
Squared average deviation 0.215 Chi square tests carried out on observed and expected frequen-

Sample size of 100 values randomly sampled out of a population of
1188.

cies. Low probability values here indicate that the null hypothesis is
incorrect, i.e., that the observed class frequencies are not repre-
sented by the chosen function.
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Fig. 5. A-A’ horizontal variogram. A is the ‘“‘classical’’ vario-

gram; B, Cressie/Hawkins; C, classical variogram for data set with
outliers removed.

various discrimination and cross-validation tests on compet-
ing models (for example, the Akaike information criterion
(AIC) [see Russo and Jury, 1987]). This criterion is:

AIC=2(ZL + k) 9

where & is the number of independent parameters in the
solution and ¥ is the negative log likelihood function [e.g.,
Hoeksema and Kitanidis, 1985]:

1
§£=§[N In 27) + N In (?) + x 7] (10)
While we do not present any AIC or cross-validation tests
for competing models, we do carry but standard-tests such as
examining the mean square reduced errors and mean errors
for the exponential model. These tests are used in a subse-
quent section on inversion results.

Given an assumed structural model and the experimental
variogram, the model parameters need to be determined by
some inversion procedure. In performing this inversion
orocess, a theoretical variogram model Y h;) will be adopted
that is equivalent to Sudicky’s [1986] covariance function.
The form of v(h;) is

y(h) = 63— (65— o) exp (=hi/A) (11)
where the j subscript refers to a direction (i.e.,j = x, Y 2, A
is the integral scale of In (K) in the Jjth direction, 00 is the
so-called ‘‘nugget effect’” and &7 is the variance of the
process. Although (11) is a one-dimensional variogram
model, it can in principle be fit to the variogram data
estimated along each core transect, both vertically and
horizontally, in order to determine the needed geostatistical
parameters. Applied in this way, however, the influence of,
say, variogram data in the horizontal y direction along B-B’
on the determination of A, in the horizontal A-A’ direction
cannot be accounted for. Nevertheless, we will first fit the
one-dimensional form (11) to the variogram data in order to
be consistent with Sudicky [1986]. Subsequent to this exer-

cise, and for comparison purposes, we will later fit a two-

dimensional anisotropic variogram model [i.e., Dagan,
19895, p. 162],
hi RN
ylhy) =63 - (63 —og) exp || = +— (12)
AR A}

to In (K) data along the two coordinate directions on each
transect in order to simultaneously determine all of the
geostatistical parameters.

Sudicky [1986] found that g = 0.10, 57 = 0.38, A, = A, =
28 m and A, = 0.12 m by first applying a logarithmic
transformation to the estimated autocorrelations and then
performing a linear least squares fit using data truncated at
approximately one-half the maximum lag distance.

The use of a logarithmic transformation is convenient as a
linearization procedure when fitting exponential functions to
data and is appropriate when the model being fitted is
intrinsically linear in its parameters [Menke, 1984; Draper
and Smith, 1966]. The method works as follows. Suppose a
data model relationship of the form

¥*(x) = a exp (bx) a3
exists. By letting ¥'(x) = In (v*(x)) and 2’ = In (a) then
y(x)=a + bx (14)

which can be solved by standard linear regression tech-
niques. To justify least squares in the instance, the following
two assumptions must be made [Draper and Smith, 1966] (1)
the variable x is without error, and (2) the residuals [y'(x) —
(¢’ + bx)] are independent random variables following a
Gaussian distribution and their variance is independent of
lag distance (homoscedastic). Of course, the latter assump-
tion is not needed to apply least squares as a model data
fitting tool; however, if the Gaussian assumption is not
correct, then the computed model results will be seriously
affected by outliers in the data. In this situation other robust
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variogram value for the large lag numbers for line C is about
0.10 lower than the classical estimate. Here the uncorrelated
variance comes closer to the sample statistics for the
screened data (Table 15). All estimators do not replicate
each other at large lags. Hence they all appear to be
unreliable at lags greater than L/2.

Figure 4 shows experimental variograms for section B-B’
in the vertical direction. The classical estimator is shown as
line A, the Cressie/Hawkins estimator as line B, and the
classical-screened estimator as line C. Again, the two solid
lines without symbols are 95% confidence intervals about
line C. Line A shows that outliers have an impact on the
variogram at all lags. The Cressie-Hawkins (B) and C lines
are quite close for about the first half of the variogram,
considering the estimation errors (solid lines). Note that past
1.0 m, all variograms show large variability past about one
half of their length.

Based on the above visual arguments and other consider-
ations, we choose to adopt the classical estimator with
outliers removed (for example, line C), as our preferred
estimator. Note that various authors such as Armstrong
[1984] and Omre [1984] recommend this approach (i.e.,
removing outliers) after careful examination of the data set
and identification of the reasons for the outlier behavior. In
our case, since a real trend or heterogeneity in the data is
ruled out (see section on drift estimation) and the outliers in
the data set are the result of small lenticular lenses of low
hydraulic conductivity material, this approach seems justi-
fied. We believe that similar results to those obtained in

_subsequent sections can be achieved by using the Cressie-
Hawkins estimator over about one half of the variogram
length.

Figures 5 and 6 show variograms in the horizontal direc-
tions for section A-A’ and B-B’, respectively. The large
differences between variogram estimates denoted by lines A
and C for all lags illustrate the consequences of a few
extreme values on variogram estimation.

It is concluded that all of the variogram estimators show
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erratic behavior at large lags, consistent with well-known
observations [Journel and Huijbregts, 1978]. This presents a
difficulty in determining exactly how much of the variogram
record should be used in fitting a theoretical variogram
model to the data. We discuss the resolution of this problem
in a subsequent section on inversion results.

METHOD OF PARAMETRIC ESTIMATION

After having calculated experimental variograms, the next
task is to model the experimental data with a theoretical
function. In geostatistics, several functions are commonly
used as variogram models. These functions include the
exponential, spherical, power, linear, Gaussian and logarith-
mic models [see Journel and Huijbregts, 1978, pp. 164-171).
The functional form of a variogram (or covariance) model is
likely to have some influence on the value of bulk hydraulic
conductivities and macrodispersivities predicted by stochas-
tic-analytic transport theory [e.g., Matheron and de Marsily,
1980; Gelhar and Axness, 1983]. Of all the available func-
tions, the exponential model is postulated to be a leading
candidate for the Borden aquifer based on visual inspection
and physical-mechanical arguments. An exponential model
is often assumed by researchers in stochastic hydrology
[e.g., Hoeksema and Kitanidis, 1985; Dagan, 1989b, p. 169].
Some theoretical work [Agterberg, 1970] shows that a con-
tinuous random variable in three-dimensional space has an
exponential autocorrelation function if it is subject to a
property analogous to the Markov property in time series
analysis. Such a'tnodel is thought to be applicable for fluvial
processes. An exponential function was also used by Su-
dicky [1986] to determine model parameters describing the
autocorrelation structure of the Borden aquifer and satisfac-
torily predicts (with Dagan’s model) the observed plume
spreading. Also, in the section on drift estimation, the
vertical data are shown to be consistent with realizations
drawn from a stochastic process with an exponential cova-
riance. In addition to these arguments, one can also apply
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Fig. 7. Experimental vertical variograms from lines A-A’ and
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These values are found to be close to one and zero, respec-
tively, for lines A-A’ and B-B’. Therefore, the selected
model is theoretically consistent.

Note that in each case, there is a difference between the
two variograms and, hence, the parameter sets determined
from each line. Random samples of In (K) taken from each
line instead of the complete set as in Table la show a
variance of 0.21 for A-A’ and 0.34 for B-B’. These values are
close to the sill values on each variogram (see Figures 3 and
4 and Table 4). A statistical variance ratio (F) test indicates
this difference is significant at the 99% confidence level.

The difference in parameter sets is further verified by
performing a Hotelling’s 72 test [Johnson and Wichern,
1988, p. 239} on the difference of mean parameter vectors
and covariances from each line. The T? test is similar to the
x* test mentioned earlier except a pooled covariance matrix
is first formed. The test determines if the difference between
the two mean vectors is statistically different. The test was
run on the two parameter sets and the result is positive past
the 99% confidence level. Therefore there is a statistical
difference in geostatistical parameters from data taken from
lines A-A’ and B-B’.

Recall that the horizontal directions spanned by the two
transects are orthogonal; hence it is possible that anisotro-
pies exist in this plane. However, the vertical directions
spanned by the two transects are coincident and therefore
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integral scales and variances inferred for the vertical direc-
tion, based on two transects, should be the same. This result
is disturbing to the authors, and it implies that perhaps one
or all of the following conditions are responsible for the
differences: (1) there were differences in experimental pro-
cedures when measuring K along A-A’ as opposed to B-B’;
(2) the weak stationarity assumption regarding the variogram
calculation is not true, i.e., the covariance depends on
spatial location; and (3) not encugh data was collected over
enough integral scales on one transect compared to another.
Since identical personnel and equipment was used in collect-
ing the data set on both A-A’ and B-B’ originally, it is
difficult to consider the first point as a viable explanation.
The second point is a possibility since the particular depo-
sitional model of the Borden aquifer is” that of an old
shoreline [Bolha, 1986]. It is possible that lines oriented in
different directions cause samples at similar depths to inter-
sect different layers. In this case a simple form for the
geometric anisotropy and/or stationarity may not be appli-
cable. The third point seems applicable since line A-A’ is
longer (19 m) than line B-B’ (12 m), although variances tend
to become larger for integrations performed over more
integral scales [Journel and Huijbregts, 1978). In any event,
line A-A’ is oriented in the direction of mean groundwater
flow and therefore is the longitudinal direction of the tracer
plume. The implication of this result is that a universal

TABLE 3. Optimal Variogram Lengths
Parameter A-Ay B-By SUD A-Ay B-By SUD
&y 0.422 0.267 0.38 0.245 0.354 0.38
og 0.118 0.097 0.10 0.027 0.063 0.10
A 7.15 2.79 2.8 0.160 0.252 0.12
AIC -97 -50 -98 -101
Length, m 17. 10. 1.1 0.90

H or V subscript refers to horizontal or vertical direction, &y is the variance. og is the “"nugget’” and
A is the integral scale. SUD refers to values obtained by Sudicky [1986].
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norms are better suited [Woodbury et al., 1987]. It should be
noted that, for the purpose of variogram fitting, the residuals
are actually x? distributed and the fitting procedure involves
minimizing fourth-order increments of the- original data
[Cressie, 1984]. If the Gaussian assumption is made in (14),
then the distribution of the data in the original parameteriza-
tion (13) must be non-Gaussian at each lag distance. In other
words, if the variogram estimates are normally distributed at
each lag distance, then the logarithmic transformation has
the effect that the original data y*(x) are measured with an
apparent accuracy that increases with x. A reduction in the
accuracy of variogram estimates with increasing lag distance
is more likely because the number of data pairs decreases
with increasing lag distance. Therefore, the appropriate
choice of parameter estimation here must be of a nonlinear
type. As will be shown, differences are obtained between the
nonlinear fits obtained here and those of Sudicky [1986]
although some of the differences in parameter values can be
attributed to Sudicky’s use of the biased form of an autocor-
relation estimator.

NONLINEAR LEAST SQUARES ESTIMATION

In this study the experimental and theoretical variograms
are fitted by two separate methods. The model parameters
are the variance, integral scale and ‘‘nugget.’” The inversion
approaches utilized here consist of a constrained simplex
(CS) approach [Woodbury et al., 1987] and the Levenberg-
Marquardt (LM) method [Press et al., 1986, pp. 523-528].
Both methods minimize the yx* misfit between observed and
calculated quantities. The CS scheme easily handles hard
constraints, does not require partial derivatives of the objec-
tive function with respect to the parameters, and can be
employed to minimize complicated nonlinear systems. The
LM scheme, being gradient based, is much faster but less
robust than the CS scheme. These methods are used inde-
pendently by both authors as a check on final solutions. In
this way, uniqueness of the solutions is rigorously examined.
Results from Sudicky’s [1986] analysis are used as a first trial
point in the CS scheme.

The covariance of the parameter estimates is a useful end
product of any inversion. However, because the inversion is
nonlinear the a posteriori distribution for the parameters is
potentially non-Gaussian. The reason for the non-Gaussian
nature of the functional surface has been examined theoret-
ically by Tarantola and Valette (1982]. In the nonlinear case
the covariance of the estimated model parameters may be
difficult to interpret especially in terms of confidence inter-
vals. An additional difficulty in the nonlinear problem asso-
ciated with this paper is that the parameter values have hard
upper and lower constraints imposed that cannot be violated
in the inversion. The implication is that the a posteriori
frequency distribution of the parameters may be of a trun-
cated nature, particularly if the expected values of the
parameters lie near hard constraint boundaries. In spite of
these difficulties covariances from nonlinear inversions are
often estimated as for the linear case, as shown by Menke
{1984, p. 152]. These caveats aside, we make the assumption
that the a posteriori pdf of the parameter estimates is
Gaussian and can be computed in the same way as the linear
inversion:

C.~0TC) N "=y (15)
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where C,, and C, are the model and data covariances. C is
estimated from the data residuals and is equal to s3I, where

s3 is an unbiased estimator of ¢ and is equal to

1 N
2 _ *(h) — Y12
S4= (N - M)j§| [y (h_/) ')'(hj)]

(16)
M is the number of parameters, and J is the Jacobian or
sensitivity matrix, equal to ay(h;)om,, where m, are the
parameters. The derivatives are evaluated at m,,,,. Statistical
inferences based on C,, are assumed to be valid for a normal
distribution. Therefore, the a posteriori pdf of the model
parameters can be directly written as

f(m) = [2m)""(C,,[] "2

- exp [~3(m— m)’C\m ~(m)] (7D
where nm = 5, m = (&;, o-g, Ags Ay, Ag) for the general case
and {m) denotes expected values (values determined from
the inverse).

The residuals

v*(h) — v(h) = n;

are checked for deviations from a normal distribution using
a Kolmogorov-Smirnov test [Press et al., 1986, p. 470].

(18)

INVERSION RESULTS

The variogram parameters are estimated as follows. First,
horizontal and vertical variograms for each transect are
calculated with the classical-screened estimator. Second,
model parameters are obtained from the nonlinear  (NL)
methods on each line, horizontally and vertically. The
procedure in each case is to obtain parameter sets for each
line and direction by deleting one data point off the end of the
data set and examining the parameters for stability and for
the minimum value of the AIC information criterion. This
criterion is equivalent to selecting the minimum mean square
error model. In this way, the optimal length of variogram is
established and the parameter set is stable. Third, and
finally, once the optimal lengths of each line are determined,
a simultaneous inversion is carried out in which the vertical
and horizontal integral scales are determined for each line.

A-A’ and B-B’ vertical classical-screened variograms are
plotted on Figure 7. As shown, the B-B’ variogram is
significantly higher than that for A-A’. The middle line was.
obtained by ‘‘pooling’’ the A-A’ and B-B’ data and then
computing the variogram. The horizontal variograms are
plotted on Figure 8. Note that if one ignores the data past 1.0
m vertically (L/2), the variance for B-B’ appears higher than
A-A’. This suspicion is verified by the analysis below.

Three model parameters are sought for each line in turn.
These values are the variance, nugget and integral scales.
Examining each variogram on each line in turn and monitor-
ing the AIC values produces the optimal length for each
variogram. This information is summarized in Table 3. Next,
simultaneous fits for the variance, nugget, and horizontal
and vertical integral scales are carried out on A-A’ and B-B’
separately. Table 4 shows the results of these inversions. We
also validate the fitted exponential model on each line by
computing mean errors and mean squared reduced errors.
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second-order spatial moment tensor of a tracer cloud about
its center of mass position, L, and with X also being a
function of the vector of geostatistical parameters m = (m;,
m,y, my, ***, my), then

(Xy(L) = f Xy(L|m)f (m) dm (20)

where f(m) is the joint pdf of the parameter estimates. For
the case of k parameters the above integral is k-dimensional.
Similarly, the variance of X(L), o-,%y(L) is given by

oL = f XHLim)f (m) dm ~ (X4L)* (1)

Note that a prediction of plume spreading based on (20) can
be quite different from that given by substituting (m) without
parameter uncertainty into an expression for X ; because of
nonlinear interactions.

Sudicky [1986] and Freyberg [1986] found reasonable
success in deterministic application of theoretical formulae
described by Dagan [1987] for prediction of the longitudinal
Xy, and horizontal transverse X,, moments of the Borden
tracer plume. Averaging ln (K) in the vertical direction over
an integral scale A, results in a reduction of the variance of
the averaged In (K) from o7 to 0.740%. The equations for
X1 (L) and X5,(L) for a horizontally isotropic medium are
{see Dagan, 1987; Sudicky, 1986, equations (14a) and (1456)]

Xu() =0.74202A 2 ] 3E L3 Ei (—L/A
fH=0. -—=—E+—+- -
1 2oyr®) 275 T2 i )

A A AZ
—1In (L/A)+Zexp (=L/A) 1+Z o (22)

) , L3 [A% A A
X32(1)=0.74(20'y/\") E ‘p“z 1+z exp (—L/A)

I 31
- E [Bi(=L/A) = In (L/IA)] - Z + E E} (23)

where E = 0.577 - - - is the Euler constant, A = Ay = A, isthe
integral scale of Y, L = Ut, U is the average groundwater
velocity, and Ei (—x) is the exponential integral. Although U
will in general be subject to uncertainty, we will assume in
this analysis that U is precisely known and its value is given
by

U= Kg.]]/rt (24)
where J| is the hydraulic gradient, # is the porosity and Kg
is the geometric mean hydraulic conductivity. Using values
presented by Sudicky [1986], U = 0.086 m/day (see also Naff
et al. [1988)). This value is very close to the velocity
estimated by Freyberg [1986] on the basis of the rate of
translation of the tracer plume. It should be recalled that the
In (K) variance, a-% appearing in (22) and (23) excludes o&
because the nugget does not contribute to the dispersion
process [Dagan, 1989b]. Note that the relationship of the
variance computed from the variogram fitting and the pro-
cess variance used in the evaluation of (22) and (23) is

2 A2 2 .
O'y—‘U'Y-U'() (25)
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In order to perform the necessary integrations in (20) and
(21), the form of the joint parameter pdf must be specified.
We assume the normal form given by (17). Given a mean
groundwater velocity U = 0.086 m/day and o}, and assum-
ing the vertical data are averaged, then k = 2 with m = (012/,
Ay). C,, becomes a 2 X 2 covariance matrix; A, is not used in
this model. The contraction of the general k X & parameter
covariance matrix obtained from variogram fitting to a 2 x 2
matrix is carried out by standard methods [e.g., Kreyszig,
1967, pp. 782-783] (see also the appendix). Experience has
shown that numerical integration of (20) and (21) in two-
dimensional parameter space for a Gaussian pdf can be
performed accurately and efficiently using Gauss-Legendre
quadrature with about 20 Gauss points.

Figures 9 and 10 show the expected rates of plume
spreading in the longitudinal and transverse directions, (X,;)
and (X3,), respectively. Also shown are the envelopes given
by (X = 20y . Note that these confidence limits assume
that the a posteriori variances are from a Gaussian process.
Because L = Ut, the predictions are alternatively expressed
as a function of the plume residence time r and the values
have been augmented by X (¢ = 0) and X5, (¢ = 0) using field
data from Freyberg [1986]. These predictions are based on
the preferred variogram model arrived at using only the A-A’
data (6% = 0.244, of = 0.072, A, = 5.14, A, = 0.209) for
reasons given earlier. The reader is reminded that A-A’ is
oriented along the direction of flow in the aquifer. Also
provided in Figures 9 and 10 are field estimates of X,; and
Xy, based on calculations performed by Freyberg [1986] and
Rajaram and Gelhar [1988] for both the components of the
chloride and bromide tracers in the direction of flow. The
field data are clustered about (X;;) at all levels of time and
essentially all the data fall within the (X ;) = 20y, uncertainty
envelopes. Results from these simulations are summarized
in Tables 7 and 8. Numbers given in these tables represent
the mean square errors between the calculated moments
given by various authors [Rajaram and Gelhar, 1988, Table
5; Freyberg, 1986, Table 6]. Data for time equals 1038 days
are ignored in this comparison as they are assumed anoma-
lous (the reader is referred to discussions by Freybeérg [1986]
and Rajaram and Gelhar {1988] on the nature of the plume
spreading at large time values). As shown in these tables, the
geostatistical data provided by this paper give results that
have generally smaller mean square errors than previous
calculations {Sudicky, 1986]. The agreement between theory
and field estimates of plume spreading is rather remarkable
considering the numerous assumptions implicit in the anal-
ysis and the fact that no calibration has been attempted. The
authors worked independently on this phase, Woodbury
calculating variogram parameters and Sudicky calculating
moment statistics.

It is important to recognize that the expressions used for
(Xy) are approximate in the sense that they reflect two-
dimensional transport in a stationary vertically integrated In
(K) field and vertical tracer movement is restricted on
account of primarily horizontal groundwater flow or pre-
sumed thin “‘impervious” beds [e.g., Dagan, 1988, 1989a].
Note also that (22) and (23) predict ensemble mean behavior
and the observed moments are in fact only one realization.
At later times the ptumes should have effectively spread over
enough integral scales to reduce this error.

An attempt to use the three-dimensional theory presented
by Dagan [1988], with o7. A, and A. uncertain, leads to an
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TABLE 4. Simultaneous Inversion Results

TABLE 6. Synthetic Data Sets, Second Case

Parameter A-A’ s.d. B-B’ s.d. SUD Parameter Horizontal s.d. True
&% 0.244 0.008 0.366 0.019 0.38 &% 0.333 0.007 0.380
o4 0.072 0.021 0.111 0.16 0.10 af 0.000* 0.035 0.000
A 5.14 1.17 8.33 1.68 2.8 A 3.01 0.046 2.80
Ay 0.209 0.050 0.336 0.075 0.12

Here, s.d. refers to standard deviation, &% is the varance, o is
the ‘“‘nugget’” and A is the integral scale. SUD refers to values
obtained by Sudicky [1986].

assumption about weak stationarity even for relatively ho-
mogeneous aquifers cannot be taken for granted.

DETERMINATION OF INTEGRAL SCALES

Part of the difficulty in using variograms to infer integral
scales is that of spatial aliasing. For example, if the sample
spacing is long compared to the range or correlation length
then determination of a short integral scale becomes impos-
sible [Russo and Jury, 1987]. To investigate if spatial aliasing
is a problem with respect to the Borden data.a series of
numerical experiments is carried out. In a first simulation, a
hydraulic conductivity field is generated over a regular grid
of 0.05-m square blocks, 7 m in length in one direction and
0.5 m in the other, for a total of 1400 values. Hydraulic
conductivity values are generated from a fognormal distri-
bution (hydraulic conductivity in centimeters per second)
with a mean log conductivity equal to —4.63 and a variance
of 0.38. An exponential covariance function is adopted,

A izjh h 5} 112

—t— 19
VANY (19)

Py= (r% exp

where h, , are the distances between points i, j in different
directions and the A are the integral scales. Since the
covariances are defined as point quantities, one- would
normally integrate the point quantities that correspond to,
say, a mesh of finite elements, over the area of the element
to produce an areally averaged covariance for the cell. Here,
since a regular mesh is chosen, point covariance values
corresponding to distances from the center of each cell are
generated and applied as an average value for that cell.

A synthetic data set is sampled to resemble Sudicky’s data
set, i.e., | m separations horizontally and 0.05 m vertically,
except that A, = A, = 0.12 m. Variograms are computed for
two transects through this data base, with a basic lag of 0.05
m vertically and 1.0 m horizontally. The experimental vari-
ogram data are then used as an input to the NL codes and
inverted to obtain the model parameters back again. The
results are summarized in Table 5. Here the underlying

‘‘true’” parameters for the vertical models are in good

Field generated from random process of &7 = 0.38, ¢ = 0, and
A = 2.80. See text for details.
*An a priori bound on this particular parameter was reached.

agreement with the estimated quantities from the NL proce-
dure. The horizontal problem is much worse. Note large
standard deviations for all parameters, indicating that esti-
mating small integral scales from coarsely sample data is
quite difficult.

The above experiment is repeated, only in this case the
original field generated is anisotropic, A, = 2.8 mand A, =
0.12 m. The sample is generated on a grid 1.0 m horizontal
and 0.05 m vertical. Variograms are computed for two
transects through this data base, and the experimental vari-
ogram data are then used as an input to the NL codes and
inverted to obtain the model parameters. The results are
summarized on Table 6. Here the underlying ‘‘true’’ param-
eters for the horizontal model are in good agreement with the
estimated quantities from the NL procedure. In Sudicky’s
original work, the horizontal spacing was 1.0 m horizontally
and 0.050 m vertically. Based on the above analyses and the
computed integral scales from the inversion, we conclude
that the original sampling density was probably adequate.

PREDICTION OF TRACER SPREADING
UNDER PARAMETER UNCERTAINTY

We have shown that it is generally not feasible to precisely
determine values for the variance and integral scales of In
(K), even when the aquifer has been sampled using a fairly
dense array of measurement points. Thus, the geostatistical
parameters describing the spatial variability of hydraulic
conductivity must in themselves be regarded as random
variables according to some joint pdf. Nevertheless, it is
possible to quantify the expected spreading rate of a tracer
plume and the uncertainty in the spreading rate provided that
information is at hand concerning the magnitude of the
uncertainty of the geostatistical parameters, possible inter-
actions between parameters, and the form of their joint pdf
[Dagan, 1988]. The parameter covariance matrix C,, deter-
mined from the nonlinear variogram fitting exercise allows
us to estimate the effect of uncertainty in describing the
geostatistical structure of the Borden aquifer on the spread-
ing of an injected tracer. Rather than perform a Monte Carlo
analysis, we present an approach suggested by Dagan
[1988]. With (X,-J-(L)) denoting the expected values of the

TABLE 5. Synthetic Data Sets, First Case
Parameter Vertical s.d. True Horizontal s.d. True
[7% 0.386 0.084 0.380 0.011 15.5 0.380
0'(:)" 0.000* 0.099 0.000 0.806 0.493 0.000
A 0.105 0.042 0.120 11.8 296. 0.120

Field generated from random process of & = 0.38, o¢ = 0, and A = 0.12. See text for details.
*An a priori bound on this particular parameter was reached.
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TABLE 7. Mean Square Errors for Data From Rajaram and Gelhar [1988]
Simulation Bromide X, Bromide X5, Chloride X, Chloride X5,
This study 7.55 0.209 18.5 0.586
Sudicky [1986] 12.4 0.569 12.4 1.54

The above values refer to the mean square errors of the observed minus the computed values. The
simulation data sets are from this study (#3 = 0.244, g = 0.072, A4 = 5.14) and from Sudicky {1986)

(&% = 0.38, 04 = 0.10, A, = 2.80). Note X0 =

plume in a heterogeneous aquifer. The implication here is
that large-scale effective flow and transport parameters such
as bulk hydraulic conductivity and macrodispersivity cannot
be regarded as single-valued deterministic entities. Thus,
even large-scale simulations of mass transport in groundwa-
ter based on effective macroscale parameters must be
treated in a stochastic framework. Our perceived view is that
of a two-tiered level of uncertainty; one due to an inability to
precisely describe point-to-point variations in the local prop-
erties of a geologic medium and the other due to an inability
to uniquely describe its statistical properties.

CONCLUSIONS

Our purpose is to systematically reexamine the Borden
hydraulic conductivity data with particular emphasis on how
various assumptions and modes of interpretation might
affect the values of inferred geostatistical parameters. Our
emphasis is on the determination of, and a comparison with,
the spatial variance tensor calculations from the natural
gradient tracer experiment at the Borden aquifer. After a
complete reexamination of Sudicky’s [1986] field experiment
the following results are obtained.

The lognormal assumption of the sampled hydraulic con-
ductivity data is examined. A closer look at the sampled data
reveals that a number of outliers (low In (K) values) are
present in the data base. As is shown, these low values cause
difficulties in estimating variograms. The analysis shows that
assuming either a normal distribution or exponential distri-
bution for log conductivity is equally appropriate,

The corresponding estimator of the related autocorrelation
used by Sudicky [1986] is a biased estimator because of the
normalization of 1/n as opposed to 1/n(h). The estimator
used by Sudicky tends to reduce mean square error and
smooth variations at large lags. In this study, variograms are
used as opposed to autocorrelations. The classical, Cressie/
Hawkins and SMAD estimators are used. The classical
estimator is shown to be unreliable due to the presence of
outliers in the data base. Screening outliers from the data
base and then using the classical estimator provides a

1.92 and X5,(0) = 2.31.

reliable method for determining the experimental variogram.
The Cressie/Hawkins estimator produces a variogram clos-
est to the screened estimate at short lags. All estimates
appear unreliable past about one half of the total length of
the variogram.

In order to determine parameter values for a chosen
exponential model, Sudicky [1986] performed a logarithmic
transformation to the data values (autocorrelations in his
case) and a fit was carried out by linear least squares using
truncated data sets. However, the use of a logarithmic
transformation is not correct in this instance. The appropri-
ate choice of parameter estimation here must of a nonlinear
(NL) type.

The NL adjustments produce. noticeable differences com-

- pared to Sudicky’s parameters. For the classical-screened

estimated variogram, NL fits produce a variance of 0.24,
nugget of 0.07, and integral scales for 5.1 horizontal and 0.21
vertical on transect A-A’. For transect B-B’ these values are
0.37,0.11, 8.3 and 0.34. The values of variance on each line
are close to their sampled values. The fitted parameter set
for B-B’ data (horizontal and vertical) is statistically different
than the parameter set determined for A-A’.

We evaluate a probabilistic form of Dagan’s [1982, 1987]
equations relating geostatistical parameters to a tracer
cloud’s spreading moments. The equations are evaluated
using the parameter estimates and covariances determined
from line A-A’ as input, with a velocity of 9.0 cm/day. The
results are compared with actual values determined from the
field test, but evaluated by both Freyberg [1986] and Ra-
Jjaram and Gelhar [1988]. The geostatistical parameters
developed from this study produce an excellent fit to both
sets of calculated moments. Variations about the expected
values are well within the error envelope calculated from
(21). For example, the mean square error for the bromide
data for X, for Rajaram and Gelhar’s | 1988] parameter set
is 7.55 as opposed to 12.4 for Sudicky’s original parameter
estimate. The geostatistical parameters satisfactorily predict
the actual spread of a tracer cloud when combined with
Dagan's stochastic theory of dispersion.

TABLE 8. Mean Square Errors for Data From Freyberg [1986]

Simulation Bromide X, Bromide X,, Chloride X, Chloride X5
This study 6.47 0.292 6.79 0.698
Sudicky {1986} 14.1 0.669 13.2 0.159
Freyberg [1986] 7.39 1.09 8.01 0.135

The above values refer to the mean square errors of the observed minus the computed values. The

Py

simulation data sets are from this study (o7 = 0.244, 0g = 0.072, A, = 5.14). Sudicky [1986) &3 =0.38,
og = 0.10, A, = 2.80), and Freyberg [1986] (o7 = 0.24, Ap = 2.70). Note X;(0) = 1.80 and X)) =

2.60.
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Fig. 9. Borden plume moments X, from various investigators. Pluses denote bromide, and asterisks denote
chioride from Rajaram and Gelhar [1988]; circles denote bromide, and crosses denote chloride from Freyberg [1986].
Solid line is computed from geostatistical parameters developed from line A-A’, incorporating uncertainty in moment
calculations. Dashed lines are the upper and lower confidence intervals at 95%.

overprediction of the longitudinal spread and an underesti-
mation of the horizontal and vertical transverse spread.
While a treatment that accounts for the fluctuating nature of
the flow field at the Borden site due to seasonal hydraulic
gradient variations could possibly resolve this disagreement
[see Naff et al., 1989}, the needed water level data have not

24.0

GELHAR/FREYBERG MOMENTS

20.0 +

16.0 o

12.0

E [X22] Moment

8.0

4.0

0.0

yet been collected and this issue cannot therefore be re-
solved until they become available.

Our calculations further demonstrate (Figures 9 and 10)
that even relatively small uncertainties in the values of the
geostatistical parameters can lead to considerable uncertain-
ties in the prediction of the bulk rate of spreading of a solute
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Fig. 10.

Borden plume moments X,; from various investigators. Symbols and lines have the same interpretation as

in Figure 9.
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APPENDIX

This appendix describes how the contraction of a 4 X 4
parameter covariance matrix obtained from variogram fitting
to a 2 X 2 matrix is carried out. First, note that

L2 2
m = (Gy, 0g, Ap, Ap)

However, Dagan’s [1987] model does not require A,. Hence,
the first contraction of C,, involves removing principal and
cross terms related to A;. Since we assume that f(m) in (17)
is Gaussian, any subset of f(m) is also Gaussian (see
Johnson and Wichern [1988, p. 129] for proof). The expected
value of A, is also removed from {m), and C,, is now 3 x 3.

Second, in Dagan’s [1987] model, o7 excludes o because
the nugget does not contribute to the dispersion process. The
required relationship is

Hence, C,, must further be contracted with &% — 0§ terms.
Suppose x = (xy, x4, X3, * - ) and we now desire the joint pdf
of f([x; — x3], x3, x4, - - *). Here we rely on the following
relationships between, say, x;, x5, x3. On the off-diagonals
of C,

Cov ([x1 — x2], x3) = Cov (x4, x3) — Cov (x3, x3)
On the diagonals,
Cov ([x1 = x2], [x1 — x2]) = Cov (xy, x})
-2 Cov xy, x3) + Cov {x3, x3)

Letting x; = &% and x, = of in the above achieves the
desired result and C,, is 2 X 2.
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