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A Comparison of Four Inverse Approaches to Groundwater Flow
and Transport Parameter Identification

ALLAN KEIDSER AND DAN ROSBJERG
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Four different methods of parameterizing spatially varying log transmissivities in an inverse
approach are compared with respect to prediction accuracy of simulated fiow and transport. Transport
parameter estimation is included by two-stage feedback optimization. In stage one the log transmis-
sivities are estimated by fitting both head and concentration data, given initial values of the source
concentration and the dispersivities. In stage two, the source concentration and the dispersivities are
estimated by fitting the concentration data. With the updated transport parameters, final estimates of
the log transmissivities are obtained by repeating the optimization of stage one. The formulated
objective functions are minimized using Levenberg-Marquardt’s algorithm. The models are applied to
synthetic two-dimensional transport problems in steady state flow regimes. The “‘true’’ log transmis-
sivity fields are generated by the turning bands method, thereby incorporating spatial variability. The
test cases differ in the input variances of the generated fields and with respect to the amount and

accuracy of “‘observed’’ transmissivity data.

I. INTRODUCTION
1.1. Background

Numerical models are powerful tools when dealing with
groundwater quality management. In recent years, the im-
portance of such models has increased with the appearance
of increasingly serious groundwater contamination problems
in the industrialized parts of the world.

Numerical models require a number of parameters char-
acterizing the aquifer. Usually, ‘prior knowledge of the
values of these parameters is limited, and they must be
quantified by calibration which uses observations of hydrau-
lic heads and solute concentrations. Most commonly the
parameters are estimated by using a ‘‘trial and error”
approach. Because the number and combinations of param-
eter adjustments are not bounded, ‘trial and error’’ is rather
flexible but also time-consuming. Additionally, the solution
is strongly dependent on the skill of the practitioner.

During recent years, inverse techniques in groundwater
flow modeling have made their appearance. Inverse models
identify unknown parameters (so-called model parameters)
by using mathematical optimization techniques. The objec-
tive is to minimize a functional of the discrepancies between
observed and calculated heads (and/or concentrations, when
transport is included). Furthermore, if model parameter
estimates are considered as random variables, then statisti-
cal estimation procedures become applicable, and the reli-
ability of the simulation model can be assesséd.

The inverse solutions are strongly influenced by instability
and nonuniqueness {the inverse problem is said to be ‘ill-
posed™’). The difficulty of overcoming ill-posedness is the
main reason why inverse techniques have not become stan-
dard tools in quantitative flow modeling. Instability often
appears as large fluctuations and nonrealistic estimates of
distributed parameters. Nonuniqueness is due to nonidenti-
fiability of one or more model parameters or to the occur-
rence of several local minima of the objective function. One
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phenomenon is often mistaken for another, e.g., instability
caused by a poorly defined minimum is often mistaken for
nonuniqueness as both lead to different solutions dependent
on the starting point of the iterative algorithm.

There are relatively few examples of inverse models in the
literature involving solute transport. This is partly due to the
lack of well-studied transport cases. Furthermore, the prob-
lems of ill-posedness characterizing inverse flow modeling
are inevitably still more pronounced when the estimation
procedure is further complicated by adding transport. Re-
views of methods and concepts related to the inverse prob-
lem are presented by, e.g., Yeh [1986] and Carrera [1987].

Concerning the forward modeling, solute transport is a
complex phenomenon, and it is difficult even to identify the
relevant transport processes. Knopman and Voss [1988]
make a coupled optimization of model identification and
parameter estimation. They discriminate between alterna-
tive, predescribed transport models involving different trans-
port processes. In the following, the governing transport
processes are assumed to be known, and only parameter
estimation is considered.

1.2.  Previous Work

Inverse transport modeling is difficult when flow and
transport parameters are optimized simultaneously because
of slow convergence rates and unstable estimates. As a
result, the flow parameters have often been assumed to be
known. Murphy and Scort [1977] introduced an inverse
approach in order to estimate the dispersivities from ob-
served concentration values. For each set of observations
they developed concentration polynomials by using double
interpolation. If the estimation is based on just two observed
values, the solution is unique. In the case of more than two
observations, the two model parameters were estimated
iteratively by nonlinear least squares regression. Umari et
al. [1979] estimated the dispersivities too, by minimizing
discrepancies between observed and calculated concentra-
tion values. They used a finite element discretization of the
transport equation to calculate concentrations. Gorelick et
al. [1983] used the location and magnitude of the pollutant

2219




2220 KEIDSER AND ROSBJERG: FOUR INVERSE APPROACHES TO GROUNDWATER FLOW

sources as unknown model parameters. They tested different
minimization criteria involving predicted concentration re-
siduals. By normalizing the residuals with the observed
values, more accurate estimates were obtained compared to
models using ordinary residuals.

The approach of Adar et al. {1988] differs in using trans-
port data to estimate flow parameters. The unknown values
were rates of recharge into the aquifer, while knowledge of
the transport parameters was implied. The recharge param-
eters were calculated by minimizing a weighted sum of

squared mass balance errors including both water and con- .

servative chemical species.

Strecker and Chu [1986] were the first to estimate both
flow and transport parameters in an inverse approach. They
reduced the difficulties of stability by dividing the optimiza-
tion procedure into two scparate stages. In stage one the
transmissivity field was estimated, and in stage two the
transport problem was treated with the dispersivities as
model parameters. The optimization in stage one was based
on head data only. Since the solute spreading also depends
on the transmissivity, the method does not fully utilize the
information inherent in the concentration data. Wagner and
Gorelick [1987] estimated flow and transport parameters
simultaneously by inverse modeling. The model parameters
were the log conductivity, the effective porosity, and the
dispersivities. They made use of nonlinear regression based
on the least squares method, which allowed uncertainties of
both optimized model parameters and simulated concentra-
tions to be estimated.

Both Strecker and Chu [1986] and Wagner and Gorelick
[1987] make use of simple, synthetic transport problems, and
in both cases the reproduction of the solute spreading was
based on the assumption of homogeneous transmissivity.
Van Rooy er al. [1989] applied different inverse models of the
two-stage type to a nonhomogeneous hypothetical aquifer. A
spatially variable transmissivity field was generated by the
turning bands method [Mantoglou and Wilson, 1982]; in
stage one the model reproduced the transmissivity field by
kriging, while the source concentration and the dispersivities
were estimated in stage two. Different kriging input func-
tions were tested, and the kriging estimates were based on
different sets of transmissivity ‘‘observations.”” The model-
ing of the spatially variable transmissivity was shown to be
important to simulate solute spreading accurately.

Keidser et al. [1990] extended the two-stage approach to a
two-stage feedback procedure. The model parameters were
divided into transmissivity values as flow parameters, and
source concentration and dispersivities as transport param-
eters. By including concentration data in the transmissivity
estimation, the transmissivity parameters and the transport
parameters were optimized iteratively. The application of
the procedure to a field problem resulted in a rapid conver-
gence: No significant improvements occurred after the first
run of the iteration loop.

1.3, Scope of Present Contribution

This study deals with inverse transport modeling, but the
most attention will be paid to the transmissivity estimation,
thereby utilizing the experience of Van Rooy et al. | 1989].

The problem of stability characterizing inverse models in
groundwater hydrology points toward multistage solution
procedures. Therefore, the applied techniques are based on

the two-stage approach. In the first stage the transmissivity
field is estimated using both head and concentration data.
Transferring the estimated transmissivity field to the second
stage, the transport parameters are optimized on the basis of
the concentration measurements. Finally, the stage one
estimation is repeated to adjust the transmissivity parame-
ters using the optimized transport parameters.

To reproduce the spatially variable transmissivities, four
different approaches are formulated. For that purpose four
different sets of transmissivity-related parameters are formu-
lated as model parameters in stage one. Further, the models
differ in the way prior information of transmissivity is used.
Three of the models reproduce point observations of trans-
missivity in the estimated field by means of kriging. One
approach supplies the observations with estimated transmis-
sivity values, the second adjusts the kriging estimates by
means of correcting terms, and the third adjusts the kriging
model by optimizing the geostatistics of the transmissivity,
In that way the three kriging approaches result in different
constraints of the transmissivity field by the incorporated
transmissivity information. Finally, in the fourth approach
the observations are not used directly in the transmissivity
estimation. The approach is based on zonation, and the
inherent information is utilized to develop the zonation
pattern.

The test cases are based on synthetic aquifers that are
constructed to resemble real life fields in regard to complex-
ity and erratic behavior.

The sensitivity of each model to the quantity and quality of
the observed transmissivity data and the ability of the
models to reproduce transmissivity fields of different com-
plexity are analyzed.

To compare the different models, test measures of simu-
lation accuracy are formulated. Furthermore, “‘future’’ pre-
dictions are carried out and compared with synthetic simu-
lations. Thereby advantages and weaknesses of each model
are identified, and guidelines for model choice in reai life
transport modeling are given.

2. METHODOLOGY

2.1. Theory

The present paper deals with two-dimensional steady state
flow and nonsteady transport of nonreactive solutes in the
saturated groundwater zone. The governing mathematical
equations are [Bear, 1972]

div(Tgrad /) —R =10 ) 0
div (D grad C ggrad C C'R 4C @)
A R
T transmissivity tensor [LZT“]];
h  hydraulic head [L];
R volume flux per unit area of fluid sinks or sources
(positive for outflow) [LT~'1;
q Darcy velocity vector [LT™1];
b saturated thickness [L];
D hydrodynamic dispersion tensor [LZT_'];
C solute concentration {ML ~3];
6 effective porosity:
C’ solute concentration in sink or source fluid (for sinks

C' = C)[ML™%].
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TABLE 1. Transmissivity Modeling Characteristics of the Four Inverse Approaches

F1 F2 F3 F4
Basic approach kriging kriging and kriging zonation
zonation
Y observations yes yes yes no
incorporated
Prior determination geostatistics of ¥ geostatistics of ¥ zonal pattern
needed and pilot point and zonal
locations pattern
Model parameters pilot point zonal correcting trend parameters and zonal transmissivities
transmissivities factors correlation structure

parameters

estimated trend is artificially conditioned on the location of
observation points. In fact, three of the approaches are
different methods for compensating these disadvantages.
The fourth approach is based on zonation, and kriging is only
used in the initial stage of developing the zonal pattern as no
specific geological information to support the zonation is
assumed available. Apart from the Y field modeling the four
approaches are kept identical, including the degree of free-
dom (the number of #/C observations minus the number of
model parameters).

The first of the inverse models, which is designated FI,
estimates the Y distribution by point kriging. The model
parameters which are to be optimized are the ¥ values at
selected aquifer points called “*pilot points.” The method
was introduced by de Marsily et al. [1984], who fitted
observed pressure records from interference tests by using
least squares minimization. In this study there are seven
pilot points, so that ’

B = (Y,, ¥, -

Y, (10)

To produce the entire ¥ field, the optimized ¥ values are
used jointly with the measured values as kriging “‘observa-
tions.””

Method F1 requires that the correlation structure of the ¥
field is known. This can be estimated by a semivariogram
analysis (in real life cases previous analysis of similar
aquifers can be applied too). In this study the semivariogram
is derived by using an automatic optimization procedure
based on the maximum likelihood approach [Samper and
Neuman, 1989]. By treating the cross-validation errors of
kriged Y values as Gaussian, a likelihood function can be
formulated based on the chosen semivariogram. Then the
parameters quantifying the semivariogram are optimized by
minimizing the negative log likelihood (NLL) of the errors.
By assuming that the errors are uncorrelated, NLL is given
by

N N 2
€;
NLL=NlIn 27+ 2 Ino?+ o - (11)
0‘.
i=p Ui

i=1

where o is the kriging variance of the ith cross-validation
error e;. Lacking other information, the semivariogram
analysis is based on the assumption of stationarity. Samper
and Neuman [1989] tested different model selection criteria,
which depend on the number of Y observations and the
number of parameters to be optimized. In the present study
three semivariogram models have been tested. As both the
number of unknown model parameters and the number of ¥

observations are identical, the minimum value of NLL itself
has been used as the selection criterion.

The IMSL minimization algorithm DBCONF was used to
minimize (11). The algorithm uses a quasi-Newton method
with a finite difference approximation to the gradient vector
[IMSL, 1987].

The second inverse model, F2, is a heuristic approach
introduced by Keidser et al. [1990] to combine the flexibility
of the zonation approach with the increased plausibility
obtained by taking information about the ¥ field into ac-
count. Based on knowledge of the correlation structure
obtained as in the application of the Fi model, nodal kriging
estimates Y*, and kriging variances 0-,2,* are calculated. Then
correcting terms proportional to 0% are added to the esti-
mates. By dividing the aquifer into subregions, the final Y
estimate is calculated as

Y=Y+ kot (12)

where k is a region-specific correcting factor to be opti-
mized. This allows Y to vary within each zone, whereas
classical zoning assigns a single ¥ value to the entire zone.
By dividing the aquifer into seven zones, the model param-
eters are the seven corresponding correcting factors

szz(kl, k2a Ty, k?) (13)

The third kriging approach, F3, optimizes the parameters
of the geostatistical description of the Y field. The geostatis-
tics are formulated by means of a trend function and an
autocovariance function. The idea of estimating the param-
eters quantifying the kriging model was introduced by Ki-
tanidis and Vomvoris [1983] to solve simple one-dimensional
problems, and extended by Hoeksema and Kitanidis [1984]
for two-dimensional application. They eliminated the esti-
mation of trend parameters by assuming spatial stationarity.
The model parameters were optimized as maximum likeli-
hood estimates, based on the joint probability distribution of
observed heads and log conductivities. Kuiper [1986] incor-
porated a linear trend and ordinary least squares minimiza-
tion of predicted head residuals into the method. Van Rooy
et al. [1989] used the least squares criterion to estimate the
trend and correlation length of the Y field. The approach
formed the first stage of a two-stage inverse transport
procedure in which, among other things, a linear trend was
compared to a second-order trend of the transmissivity field.
The second-order model gave the closest fit of the concen-
tration plume in the far-field region. In the present study the
second-order model for the mean transmissivity is used, and
is expressed as
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Hydrodynamic dispersion is assumed to equal mechanical
dispersion, and other processes are considered negligible.
Assuming aquifer isotropy, the coefficients of the dispersion
tensor can be defined as [Bear, 1972]

Dy = Blv| (3)

D= Bqlv| (4)

D;, Dy longitudinal and transverse dispersion
coefficients corresponding to the flow direction
L2r'y;
B., Br longitudinal and transverse dispersivities [L];
[v] magnitude of the seepage (or pore water)
velocity vector (v = q/6) [LT ']

The dispersivities, 8, and By, are not constants, but
depend on the time or length scale of the transport process
[e.g., Dagan, 1982].

The hydraulic head, #, and the solute concentration, C,
are the dependent variables of the governing equations, and
their accuracy depends on knowledge of the physical param-
eters T, R, Br, By, 0 and C'. In the inverse approach,
unknown or incompletely known physical parameters are
selected as model parameters that are to be estimated using
observed values of 4 and C.

2.2. Parameter Identification Procedure

The transmissivity, T, is considered to be stochastically
distributed. That is, the parameter is randomly varying, and
its statistical behavior is a function of spatial location. Log
transmissivity ¥ = In T is considered instead of T to avoid
solutions with negative values of T. Further, as T is known
from experience to be lognormally distributed [e.g., Freeze,
1975], working with Y lends some optimality properties to
methods such as kriging.

The model parameters are divided into two groups: the
flow parameters py, which are used to define the Y field, and
the transport parameters p, = (8., Br, C').

The hydraulic head, k4, is assumed to be measured at M
locations, and the concentration C at L locations of the
aquifer. The solute stems from a point source, and the time
and location of the leakage are assumed to be known.

Model parameters are estimated by a two-stage feedback
pracedure. In stage one, the parameters py are estimated by
using the generalized least squares model fit criterion. The
criterion fits the calculated to observed values of head and
concentration by minimizing the objective function

TABARY) = Jalbp) + Tc(pflpo) (5)

where
T(bp) = [y — h1"W,[h(p) — B] (6)
JebAp,) = [Cbdp,) — CI'W ICpp) - C1 (D

Here characters with tildes and circumflexes designate ob-
served and calculated values, respectively. W, and W¢ are
weight matrices. The superscript T indicates the transpose.
The calculation of € is based on initial guesses of the
transport parameters p,. In stage two, the estimated Y field
is used, and p, is optimized by minimizing the objective
function

{ START )

A
(+]
B

Y
minimize
Ielpyipy)

o>

number

minimize
Jilpilpr)

Fig. 1. Diagram of the superior feedback loop.

J(pdpp = [C@lpy — CI"WCBpp) —C]  (8)

Finally, stage one is repeated to adjust the transmissivity
parameters, py, using the optimized transport parameters.
The optimization procedure is shown in Figure 1.

The models imply knowledge of the weight matrices W,
and W. Assuming the correlation between measurement
errors to be negligible, only diagonal elements of the matri-
ces are nonzero. In the present study, W, is set equal to the
unit matrix, while the diagonal elements wc, of We are
weighted with respect to the observed values of C:

we,=(Ci+m)™  i=1,2,-,L 9)

The expression is based on the fact that the differences
¢ — C tend to be proportional to the observed values at large
concentrations, while tending to a constant at low concen-
trations. Thus, the constant n is added to prevent large
relative differences at low concentrations to dominate [Van
Rooy et al., 1989].

The groundwater model selected for the study is the one
developed at the U.S. Geological Survey by Konikow and
Bredehoeft [1978]. The model makes use of the method of
characteristics (MOC) approach to solve the solute transport
equation.

The objective functions (5)—(7) and (8) are minimized using
the IMSL version DBCLSF of the Levenberg-Marquardt
algorithm. The routine uses a finite difference approximation
to the Jacobian matrix [IMSL, 1987].

2.3. Transmissivity Field Modeling

To reproduce the log transmissivity field, four different
models are formulated as briefly sketched in Table 1. Point
observations of Y at N locations of the aquifer are assumed
to be available.

All four approaches are more or less based on kriging,
which is very suitable to inverse modeling as it estimates a
random field from a few statistical parameters. The descrip-
tion of spatially distributed parameters by simple functional
expressions is essential in order to avoid instability. On the
other hand, kriging smooths out spatial variations, and the
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transport data. In test case 4 the pilot points and zonations
from test case 1 are retained. On the basis of test case 4, the
models F1 and F2 are further tested with respect to their
sensitivity to the formulated geostatistical model and to the
prior determination of pilot point locations and zonation
pattern, respectively.

All other parameters and conditions not described above
are kept identical in the different test cases. By setting the
constant 7 in (%) to 100 mg/L a reasonable weighting of the
concentration residuals is obtained. The different conditions
represented by the test cases concern the transmissivity
only, and analysis of the sensitivity to noise in head and
concentration data is beyond the scope of the paper.

3.2, Measures of Prediction Accuracy

Two types of prediction accuracy are considered. The first
type accounts for the ability to fit the ““observation’’ data.
[ The two measures of “data fit" used are

L
1
HDF = E‘, (hy=F))

i=1

(20)

L
1 . ~
CDF = - 2 we (Ci— C)?

i=1

n

The applied symbols are defined in section 2.2.

The second type accounts for the ability to fit the entire
distribution of head and concentration. Two measures of
“model fit* are formulated:

1 n
HMF = ~ > (hi = hy)? (22)

i=1

Fig. 2. The fictitious aquifer and locations of *‘observation”
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] No flow boundary. 4,4 10 T-observations (the 5
solid triangles are the
Fixed head (h = 2.0 m). only ones used in case 3).
f & Fixed head (h = 6.0 m). 20 h-observations.
! D Source. S C~observations.

data (the nodal distance is 200 m).

1
CMF]g =]
ne

(23)

— C;)?|transport period = 18 years

In (22) and (23) n and n. are the number of finite difference
nodes and the number of nodes influenced by the C plume,
respectively. The 4; and C; are nodal values of the ‘‘real’’
synthesized distributions, and the w,; are calculated by
means of (9) with C; substituted for C,.

A further measure is formulated accounting for the ability
of the models to fit a future situation (40 years transport
period):

ne

1 A
CMFyy = | — 2 wi(C;

Ci=1

- Ci)zltransport period = 40 years | (24)

CMF,; acts as a measure of “‘prediction performance’ to
indicate the reliability of the estimated model parameters,

3.3, Semivariogram Analysis

For each of the two generated fields, 10 Y “‘observations”’
are selected. On the basis of this prior information the
semivariograms to be used as input to the kriging approaches
of F1 and F2 are estimated.

The incorporated trend is not taken into account as no

{ )
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Flx, y)=0,+ 60,x+ 03y + 6,x° + 0592+ 6xy  (14)

The @ are the unknown coefficients quantifying the trend.
The semivariogram analysis carried out in the application of
F1 and F2 leads to a Gaussian model (section 3.3). For the
sake of equality, the Gaussian expression also is used for the
autocovariance in the F3 approach:

Covy (r) = o2 exp (~a 2r?) (15)

where r is the spatial lag, % is the variance, and « is the
reciprocal correlation length. The unknown parameters in
(14)-(15) are

pf3= (a’ 61’ 02’ ety 96) (16)

The applied kriging formulation is independent of . Thus
the parameter is not identifiable and is not included in the set
of model parameters in (16).

The fourth inverse model, F4, deals with zonation of the Y
field, where the mean log transmissivities in each zone are
the unknown parameters to be optimized. In the literature,
the zonation approach is used frequently [e.g., Emsellem
and de Marsily, 1971; Cooley, 1977). In the present study the
number of model parameters is harmonized by dividing the
aquifer into seven zones

b= (Ypn Yoo oo, Ty) 17)

Neuman and Yakowirz [1979] incorporate prior informa-
tion into the zonation approach by adding a penalty term to
the objective function. The penalty term is a functional of the
departures of the estimated zonal transmissivities from prior
values. By constraining the estimates the stability of the
solution is increased.

However, to simplify a comparison between the four
approaches the parameter identification procedure (includ-
ing the minimizing criterion) is kept identical, so the addition
of a penalty term to the objective function of the F4 model is
not inch:ided in this study.

2.4. Parameterization and Initial Parameter
Estimates

Before starting up the inverse models, determination of
the pilot point locations of F1 and the zonation patterns of F2
and F4, respectively, is required. This task is performed by
trial and error minimization of the fit criterion (5). For the F1
model, the best results have been obtained by concentrating
the pilot points in limited domains of the aquifer. To begin
with, the most sensitive regions were identified by distribut-
ing the pilot points evenly throughout the aquifer. For the F2
and the F4 models, the starting point of the zonation pattern
adjustments is based on plots of the initially kriged distribu-
tions of the transmissivity. In most cases, the final zonation
pattern has been close to the isoline structure of the kriged
field.

Finally, initial values of the unknown model parameters
must be specified for the optimization algorithm. To make
the procedure as objective as possible, the initial estimates
of py are calculated based on the discrete observations of the
transmissivity, as described below.

For the F1 model, the unknown log transmissivities at the
pilot points are initialized by point kriging, based on the N
observed values. The same initial transmissivity distribution

is used in the F2 model by setting the correcting factors in
(13) to zero.

For the F3 model, the trend of the Y field is initially
expressed by the best linear regression model based on the ¥
observations only. With respect to the reciprocal correlation
length a, the autocovariance function (15) implies

1 COvY(nJ”Z
a=;

—ln — 2 (18)

gy

Given N Y data, N(N — 1)/2 pairs of different observations
(¥;, Y’j) can be selected. As a first guess, a is set equal to the
mean of the N(N — 1)/2 terms

1 (Y, - 7)Y, - 7) 12

==l | (19)

r s (Y =Y+ (Y; - 7))?]

In (19) an overbar designates the initial regression-estimated
trend values at the actual data points, while r denotes the
spatial distance between the data points.

The unknown zonal log transmissivities of the F4 model
are initially calculated using the kriging model of F1 and F2.
This was accomplished by modifying the kriging formulation
to work with region-integrated semivariogram values.

3. Test PROGRAM

3.1. The Synthetic Transpor: Problem

The inverse models are applied to a synthetic two-
dimensional problem. Figure 2 shows the finite difference
discretization, the boundary conditions, and the location of
the solute source of the hypothetical aquifer. The synthe-
sized source concentration is 1000 mg/L. The log transmis-
sivities are generated as a Gaussian-distributed stochastic
process using the turning bands method -[Mantoglou and
Wilson, 1982], in which an exponential autocovariance func-
tion is used to incorporate spatial correlation, The generated
field is isotropic, and the correlation length is 400 m. A linear
trend of 0.5/km is added to the generated stationary field.
The ‘‘real” stationary head distribution and the *‘real”
nonstationary solute spreading are calculated by using the
final transmissivity field as input to the MOC model. From
the constructed transport problem, 20 head values and five
simultaneous concentration values (18-year transport pe-
riod) are selected as ‘‘observation’’ data. Figure 2 shows the
locations of the “‘observations’’ in the quadratic aquifer with
side length 4000 m.

The inverse approaches are applied to four test cases
which differ in the variability of the generated log transmis-
sivity field and with respect to the amount and accuracy of
the ‘‘observed’” transmissivities. Test case 1 is used as a
reference case. In test cases 1 and 2 the log transmissivities
are generated with different values of the Gaussian variance
to compare the ability of the models to reproduce fields of
different complexity. Test cases 1 and 3 use different num-
bers of Y “‘observations’’ to compare the sensitivity of the
models to the amount of prior information. Test cases 1 and
4 use exact and noisy Y ‘‘observations,’’ respectively, to
compare the sensitivity of the models to the quality of the
prior information. The pilot point locations of F! and the
zonation patterns of F2 and F4 are adjusted in each of the
test cases 1-3 to obtain the best overall fit of the flow and

o gt
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Fig. 4. The two generated transmissivity fields: (a) test case 1; (b)
test case 2 (transmissivities are in 1000 m?/s).

predicted solute transport. In model F3, even a second-order
trend in the transmissivity field seems inadequate when
dealing with the complex transmissivity field of test case 2.

3.6. .Test Case 3

In the third test case the number of transmissivity obser-
vations is reduced from 10 to five. The selected locations
appear in Figure 2. The transmissivity field of case 1, which
was generated with a variance of 0.4, is applied. Table 5 and
Figure 7 show the simulation results.

The deteriorations of the test measures of F3 are the most
significant, which emphasizes the strong dependence of F3
on the T data. F1 and F2 perform relatively better with
respect to compensation for the reduced information. While
the fewer T observations reduce the basis for the kriging
approaches, F4 is unaffected by the altered conditions and
becomes now superior. : '

As regards model fit, the F1 model generates better
measures than the F2 model at the time of observation, while
the future predictions indicate F2 to be the most reliable of
the two approaches. This phenomenon is due to the differ-
ence between the *‘point correction’” approach of F1 and the
“‘zonal correction’’ approach of F2. The ability of FI to
affect the kriged structure at the local scale makes it flexible
enough to fit the observed ‘‘short-time’” migration of the
plume, but the continued simulation of the plume is more
exposed to distortion when based on these large local-scale
corrections than the regional-scale corrections implied by F2.

3.7. Test Case4

While the selected transmissivity observations of the first
three test cases are the exact generated values, the effect of
noisy transmissivity data is examined in the fourth test case.
Ten vectors of independent Gaussian noise are generated
with zero mean and a variance of 0.4. The noise vectors are
added to the ‘“‘observed™ log transmissivities of case 1,
thereby constructing 10 sets of noisy data.

The averaged test measures from the application of the
inverse models F1, F2 and F3 to the noisy data are shown in
Table 6. The change in the measures from the results of case
1 also is shown. The F4 model is not included because of the
independence of the T data.

The simulation accuracy of all three models was reduced
considerably by the added noise. F1 and F3 are apparently
most sensitive to measurement errors, while F2 better com-
pensates for the noisy T data. In this case the F2 model
benefits from the zonation part of the ‘‘mixed’’ approach by
which it acquires the ability to moderate the regional influ-
ence of an erroneous Kriging observation.

TABLE 3. Simulation Results of Test Case 1

CPU Time,
Model HDF, m? HMF, m? CDF g CMFg CMFy, min
F1 0.0040 0.0031 0.0019 0.0045 0.0038 165
F2 0.0039 0.0031 0.0029 0.0026 0.0043 110
F3 0.0070 0.0075 0.0039 0.0034 0.0017 75
F4 0.0047 0.0032 0.0003 0.0018 0.0018 183
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TABLE 2. Results of Semivariogram Parameter Optimizations a. CASE 1. LOGTRANSMISSIVITY (10 DATA)
Model ) a, m A Min (NLL)
E 0.5 - sompled
Test Case 1 o o _
exponential 0.256 901. 12. D 0.4~ et
gaussian 0.326 1086. - 10. 5 e goussion
monomial 0.184 .- 0.414 13. g 0.3 —— monomial
Test Case 2 4
exponential 1.0* 3040. 17. 0.2
gaussian 0.440 1070. 13.
monomial 0.304 .o 1.0* 17. 0.1 4

Three log transmissivity semivariogram formulations are applied
to two data sets of test case | and test case 2, respectively.
*Upper bound of parameter range.

information about the Y field except the Y observations is
assumed available. Therefore, the applied stationarity-based
procedures will to some extent fail in selecting the ‘‘true”
semivariogram. Three different semivariogram formulations
are optimized according to the methodology described in
section 2.3. The tested formulations are the exponential,

y(r) = w[l — exp (-—:—I)} (25)

»2
y(r) = w[l — exp (-—P)} (26)

and the monomial,

the Gaussian,

y(r) = wr? (27)

In (25)-(27), v is the semivariogram, and r is the spatial
lag. The results of the parameter optimizations are listed in
Table 2. In both cases the Gaussian formulation is selected,
as this model leads to the smallest minimum value of the
NLL. In Figure 3 the optimized modeis are compared with
the corresponding sampled semivariograms.

3.4. Test Case 1

In the first test case, a log transmissivity field with a
variance of 0.4 is generated (see Figure 44). The locations of
the 10 transmissivities selected as ‘‘observations’” are shown
in Figure 2. Test case 1 acts as a reference case. The
simulation results are listed in Table 3 as measures of data
and model fit. The model fit measures (22)—(24) are visual-
ized for each of the four approaches in Figure 5. The large
plots show the accuracy of the future predictions (CMFg),
and the small plots in the corners are the fit at the time of
observation (CMF 3). The fit of the stationary head distribu-
tions also is shown in the small plots (HMF). *‘Observed”’
head and concentration are contoured from the full grid
values produced by the ‘‘true’’ simulations.

The results document the suitability of the reference case:
Except for some poor head measures of F3 no significant
differences are revealed among the test measures of the four
approaches. The ability of F3 to fit the head data varies over
the aquifer, while the simulation accuracy of the other
approaches is more homogeneous. In fact, the F3 model
reproduces the aquifer very well downstream of the source,
which implies a close fit of the predicted plume. On the other
hand, the optimized trend causes extreme transmissivity

b. CASE 2. LOGTRANSMISSIVITY (10 DATA)
E 0 - sompled
.8’ 0.8 /./,/ - = :;:‘ponen—
§ /./'/ g gaussion
E 0.6 B /,/'/ /"4'; ~ - |=-=- monomis!
8 1 ‘_2/_, ”/,‘,

0.0 T Pt TP T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
log (km)

Fig. 3. Sampled and optimized log transmissivity semivario-
grams: (a) test case 1; (b) test case 2. In both cases the semivario-
grams are based on 10 selected point ‘‘observations.”

estimates upstream of the source, and the incorporated
transmissivity observations are inadequate to influence the
kriging estimates in this region.

3.5. Test Case 2

In the second test case the variability of the log transmis-
sivities is increased. The distribution is generated as in case
1, but the variance equals 0.7. The numbers and locations of
the observation data are unchanged. Figure 4b shows the
generated field of test case 2. Table 4 lists the values of the
test measures, and Figure 6 shows the corresponding model
fits. '

When applied to this more complex T field, the results of
F3 and F4 are inferior to the results of F1 and F2. The ability
of the F1 model to reproduce large local heterogeneities is
due to the possibility of clustering the pilot points in regions
of particular complexity. The F4 model fails somewhat
because its ability to identify variabilities beyond the re-
gional scale is too limited. If prior transmissivity information
is taken into account by adding a penalty term to the
objective function as described in section 2.3, the future
simulation might be improved due to more plausible esti-
mates. Here we have found, however, that the combined
zonation and kriging approach of F2 is superior to ¥4 as
regards both the fit of the head field and the reliability of the
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selected. Case 4.1 designates the application of F1 and F2 to
this specific data set using the pilot point locations and
zonation pattern from case 1. In case 4.2 the pilot points and
the zonation are adjusted according to the new conditions
caused by the added noise. In case 4.3 the geostatistical

model obtained by the semivariogram analysis is replaced by
that optimized by F3. The simulation results are listed in
Table 7, and Figures 8, 9, and 10 compare the obtained
model fits of the three cases 4.1, 4.2 and 4.3.

For both F1 and F2, the simulation is improved consider-

TABLE 5. Simulation Results of Test Case 3

CPU Time,
Model HDF, m? HMF, m? CDFg CMFyq CMF,, min
F1 0.0040 0.0028 0.0035 0.0032 0.0064 64
F2 0.0032 0.0039 0.0005 0.0108 0.0061 255
F3 0.0092 0.0065 0.0092 0.0230 0.0088 145
F4 0.0047 0.0033 0.0005 0.0018 0.0029 72
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A model F3; (d) model F4. The large plumes are future simulations, and the small plots are at the time of observation
(head is in meters and concentration is in milligrams per liter).

In the application of models F1 and F2 to the 10 sets of the
noisy T data, the pilot point locations and zonation pattern
were kept unchanged from the optimum distributions ob-
tained with the exact data in case 1. To evaluate the

sensitivity of F1 and F2 to the locations of pilot points and
regions, respectively, and to the identified geostatistical
model, additional tests were carried out. For that purpose
the noisy data set that led to the poorest test measures was

TABLE 4. Simulation Results of Test Case 2

CPU Time,
Model HDF, m? HMF, m? CDF g CMF g CMFy min
F1 0.0041 0.0058 0.0033 0.0056 0.0108 117
F2 0.0045 0.0068 0.0025 0.0061 0.0101 160
F3 0.0096 0.0131 0.0264 0.0292 0.0346 144
F4 0.0087 0.0092 0.0023 0.0061 0.0318 153
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TABLE 7. Simulation Results of Test Case 4.1, 4.2, and 4.3

CPU Time,

Case HDF, m? HMF, m? CDF4 CMFg CMFy min
Model Fl

4.1 0.0210 0.0329 0.0243 0.0345 0.0556 213

4.2 0.0124 0.0272 0.0098 " 0.0257 0.0464 224

4.3 0.0032 0.0184 0.0074 0.0246 0.0156 489
Model F2

4.1 0.0144 0.0203 0.0052 0.0313 0.0248 517

4.2 0.0039 0.0112 0.0061 0.0174 0.0094 328

4.3 0.0047 0.0121 0.0061 0.0081 0.0082 257

ably from case 4.1 to case 4.2, thereby revealing the models
to be very sensitive to pilot point locations and zonation
pattern, respectively. Still, F1 is inferior to F2 with respect
to its ability to compensate for the noisy data. When using
the geostatistics optimized by F3, the improvements of the
Fl-based simulations are pronounced, which shows the
approach to be very sensitive to the applied geostatistical
model. The overall fit of the head is improved, which implies
that the future prediction of the plume is more reliable. As
regards F2, no significant improvement is obtained. This
limited sensitivity to the geostatistical model indicates that
the approach is relatively robust to model errors (i.e., errors
caused by model approximations in contrast to measurement
errors). i

3.8. Comments on the Optimization Process

For each of the four tested inverse approaches the con-
sumnption of CPU time differs from one optimization problem
to another. However, considering many optimizations, no
one of the formulations is clearly more efficient. This is
illustrated by the computational costs of the 10 optimizations
of case 4. When comparing the three involved models, the
averaged costs of the computer runs are almost equal (see

nodes (200m)

Table 6). But, if the time consumed during the initial trial and
error optimization of pilot point locations or zonation pattern
is included, then F3 is most efficient. As regards the initial
determination of the pilot point locations of F1 and zonation
patterns of F2 and F4, respectively, four to eight adjust-
ments were required.

4. SUMMARY AND CONCLUSIONS

Four inverse approaches in two-dimensional groundwater
transport modeling have been compared. The approaches
differ in the way spatially variable transmissivities are mod-
eled. However, the number of model parameters and thus
the degrees of freedom are the same in each approach. The
approaches are based on the two-stage feedback method,
and the focus has been on the estimation of transmissivity.
Four test cases which differ in the variability of the trans-
missivity field and with respect to the quantity and quality of
the input transmissivity data were constructed.

The first approach, F1, estimates log transmissivities at
selected ‘‘pilot points®’ which, with measured values at
observation points, are used to produce a transmissivity
distribution by kriging. In spite of its apparent flexibility, this
approach did not perform well in the presence of measure-
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case 3. model

TABLE 6. Simulation Results of Test Case 4

F4 (transport time 40 years)

HDF HMF Averaged
(AHDF), (AHMF), CDF g CMF 5 CMF CPU Time,
Model m? m? (ACDF3) (ACMF ) (ACMF ) min
FI 0.0088 0.0112 0.0085 0.0175 0.0181 243
(+0.0047) (+0.0081) (+0.0066) (+0.0130) (+0.0143)
F2 0.0071 0.0084 0.0053 0.0145 0.0094 268
(+0.0031) (+0.0053) (+0.0024) (+0.0119) (+0.0051)
F3 0.0138 0.0155 0.0105 0.0205 0.0122 280
(+0.0068) (+0.0080) (+0.0066) (+0.0171) (+0.0105)

The listed test measures are averaged values from the 10 model runs with noisy T data. The
differences from the measures of test case | (exact T data) are also given.
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other hand, the model is quick and easy to use because no
prior geostatistical analysis or determination of the physical
model (e.g., zonation pattern) have to be carried out. The
approach could be used to optimize the geostatistics as input
to the first two approaches, which also are based on kriging.

The fourth approach, F4, is the pure zonation approach.
The aquifer is divided into subregions of homogeneous
transmissivities, which are optimized by the model. The
approach does not incorporate T observations. In spite of
the simplicity of the approach it is generally superior to the
data-dependent approaches in cases of limited data availabil-
ity and poor data quality. However, when applied to fairly
complex aquifers it does fail somewhat. In this case, the
prediction performance will possibly be improved by incor-
porating the transmissivity information more directly in an
extended objective function, comprising a term that penal-
izes departures from prior estimates.
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ment and model errors. However, the approach is the best at
reproducing large local heterogeneities due to the influence
of the pilot points on the kriged T field.

The second approach, F2, uses kriging, too, but “*correct-
ing terms”’ proportional to the kriging standard deviations
are added to the kriging estimates. The proportional factors,
which apply to specific regions, are optimized. This joint
kriging and zonation approach seems to be suitable to
all-round applications: Because of the flexibility of the
zonation it generally performs better than the two other
kriging approaches. Additionally, the model seems to be
robust to erroneous geostatistical formulations. Compared
to the pure zonation approach it profits by the incorporated
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transmissivity information when applied to aquifers of in-
creasing variability. On the other hand, it becomes inferior
to the pure zonation approach in the case of data scarcity or
measurement errors.

The third approach, F3, estimates the trend and the
correlation length of the log transmissivity, and the entire
distribution is estimated by kriging. Contrary to the two
other kriging approaches, prior knowledge of the covariance
structure is not implied in this case. This approach is very
sensitive to the number and the reliability of T data, and
simulation accuracy is strongly dependent on how closely
the T data represent the true distribution. Further, the
approach is inferior when applied to complex T fields. On the
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Fig. 10. Same as Figure 8, but for test case 4.3.




