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Review of Parameter Identification Procedures in Groundwater Hydrology:
The Inverse Problem

WiLLiaM W-G. YEH

Civil Engineering Department, University of California, Los Angeles

The purpose of this survey is to review parameter identification procedures in groundwater hydrology
and to examine computational techniques which have been developed to solve the inverse problem.
Parameter identification methods are classified under the error criterion used in the formulation of the
inverse problem. The problem of ill-posedness in connection with the inverse problem is addressed.
Typical inverse solution techniques are highlighted. The review also includes the evaluation of methods
used for computing the sensitivity matrix. Statistics which can be used to estimate the parameter uncer-
tainty are outlined. Attempts have been made to compare and contrast representative inverse procedures,

and direction for future research is suggested.
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INTRODUCTION

In recent years, simulation and mathematical models have
often been used to analyze a groundwater system. In general,
physically based mathematical models are solved by finite-
difference or finite-element approximations. Most of the
groundwater models are distributed parameter models, and
the parameters used in deriving the governing equation are
not directly measurable from the physical point of view and
have to be determined from historical observations. Tradition-
ally, the determination of aquifer parameters is based upon
trial-and-error and graphical matching techniques under the
assumptions that the aquifer is homogeneous and isotropic
and a closed-form solution for the governing equation exists
[Theis, 1935]. Such techniques would be inapplicable in a
situation where aquifer parameters vary with space or no
closed-form solution exists for the governing equation.

Copyright 1986 by the American Geophysical Union.

Paper number 5W4047.
0043-1397/86/005W-4047505.00

95

The problem of parameter identification in distributed pa-
rameter systems has been studied extensively during the last
two decades. The term “distributed parameter system” implies
that the response of the system is governed by a partial differ-
ential equation and parameters imbedded in the equation are
spatially dependent. The inverse problem of parameter identi-
fication concerns the optimal determination of the parameters
by observing the dependent variable collected in the spatial
and time domains. The number of observations is finite and
limited, whereas the spatial domain is continuous. For an in-
homogeneous aquifer the dimension of the parameter is theo-
retically infinite. In practice, spatial variables are approxi-
mated by a finite-difference or finite-element scheme while the
aquifer system is subdivided into several subregions with each
subregion characterized by a constant parameter. The re-
duction of the number of parameters from the infinite dimen-
sion to a finite dimensional form is called parameterization.

There are two types of errors associated with the inverse
problem: (1) the system modeling error, as represented by a
performance criterion, and (2) the error associated with pa-
rameter uncertainty. An increase in parameter dimension (the
number of unknown parameters associated with parame-
terization) will generally improve the system modeling error,
but will increase the parameter uncertainty and vice versa.
The optimum level of parameterization depends on the quan-
tity and quality of data (observations).

ILL-POSEDNESS

The inverse problem is often ill-posed. The ill-posedness is
generally characterized by the nonuniqueness and instability
of the identified parameters. The instability of the inverse solu-
tion stems from the fact that small errors in heads will cause
serious errors in the identified parameters.

Chavent [1974] studied the uniqueness problem in con-
nection with parameter identification in distributed parameter
systems. As was pointed by Chavent, the uniqueness problem
has a great practical importance, because in the case of non-
uniqueness, the identified parameters will differ according to
the initial estimate of the parameters, and there will be no
reason for the estimated parameters to be close to the “true”
parameters. As a consequence, the responses of model and
system may differ for inputs different from those that have
been used for identification. Chavent studied the uniqueness
problem for two situations: (1) the case of constant parameters
and (2) the case of distributed parameters in space. In case 1,
i.e., constant parameters, there are generally more measure-
ments than unknowns, so that the general situation is that the
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inverse problem is unique. In case 2, i.e., distributed parame-
ters, if only point measurements are available, the inverse
problem is always nonunique. The term, point measurements
refers to the situation where measurements are made only at a
limited number of locations in the spatial domain.

The uniqueness problem in parameter identification is inti-
mately related to identifiability. The notion of identifiability
addresses the question of whether it is all possible to obtain
unique solutions of the inverse problem for unknown parame-
ters of interest in a mathematical model, from data collected
in the spatial and time domains. Kitamura and Nakagiri
[1977] formulated the parameter identification problem as the
one-to-one property of the inverse problem, ie. the one-to-
one property of mapping from the space of system outputs to
the space of parameters. However, the uniqueness of such a
mapping is extremely difficult to establish and often nonexist-
ent. They defined the identifiability as follows: “We shall call
an unknown parameter “identifiable” if it can be determined
uniquely in all points of its domain by using the input-output
relation of the system and the input-output data.” Kitamura
and Nakagiri also obtained some results for parameter identi-
fiability or nonidentifiability for a system characterized by a
linear, one-dimensional parabolic partial differential equation.

Another definition of identifiability was given by Chavent
[1979b], which is suited to the identification process using the
output least square error criterion. If such criterion is used for
solving the inverse problem of parameter identification, the
parameter is said to be output least square identifiable if and
only if a unique solution of the optimization problem exists
and the solution depends continuously on observations.
Chavent [1983] presented a weaker sufficient condition for
output least square identification.

Identifiability is usually not achievable in the case of point
measurements where data is only available at a limited
number of locations in the spatial domain. In view of the
various uncertainties involved in groundwater modeling, a
groundwater model can only be used to approximate the be-
havior of an aquifer system. If a small, prescribed error is
allowed in prediction, Yeh and Sun [1984] developed an ex-
tended identifiability criterion which can be used for designing
an optimum pumping test to assist parameter identification.
The extended identifiability is called the “d identifiability,”
which is based on the concept of weak uniqueness.

CLASSIFICATION OF PARAMETER IDENTIFICATION METHODS

Various techniques have been developed to solve the inverse
problem of parameter identification. Neuman [1973] classified
the techniques into either “direct” or “indirect.” The “direct
approach” treats the model parameters as dependent variables
in a formal inverse boundary value problem. The “indirect
approach” is based upon an output error criterion where an
existing estimate ot the parameters is iteratively improved
until the model response is sufficiently close to that of the
measured output. In a survey paper by Kubrusly [1977] on
distributed parameter systems identification, he classified the
identification procedures into three categories: (1) direct
method, which consists of those methods that use opti-
mization techniques directly to the distributed (infinite-
dimensional) model; (2) reduction to a lumped parameter
system, which consists of those methods that reduce the dis-
tributed parameter system to a continuous or discrete-time
lumped parameter system which is described by ordinary dif-
ferential equation or difference equation; and (3) reduction to
an algebraic equation, which consists of those methods that
reduce the partial differential equation to an algebraic equa-
tion.

There are only two types of error criteria that have been
used in the past in the formulation of the inverse problem for
a distributed parameter system. Chavent [1979b] classified the
identification procedures into two distinctive categories based
upon the error criterion used in the formulation. His classifi-
cation is intrinsically consistent with Neuman’s [1973]. Hence
we shall classify the inverse solution methods into the follow-
ing two categories based upon the error criterion used in the
formulation of the inverse problem.

Equation Error Criterion (Direct Method
as Classified by Neuman)

If head variations and derivatives (usually estimated) are
known over the entire flow region and if the measurement and
model errors are negligible, the original governing equation
becomes a linear first-order partial differential equation of the
hyperbolic type in terms of the unknown parameters. With the
aid of boundary conditions and flow data, a direct solution for
the unknown parameters may be possible.

In practice, observation wells are sparsely distributed in the
flow region in an arbitrary fashion and only a limited number
of observation wells are available. To formulate the inverse
problem by the equation error criterion, missing data (obser-
vations) have to be estimated by interpolation. The interpo-
lated data contain errors in interpolation. If the interpolated
data along with observations, which also contain noise, are
substituted into the governing equation, an error term will
result. Such an error is called the equation error. The error is
then minimized over the proper choice of parameters. It
should be noted that approximating head variations in the
entire domain using an interpolation scheme, without con-
sidering the statistical properties of sampling, would cause
errors in the results of parameter identification.

Among the available techniques we may mention the energy
dissipation method [Nelson, 1968]; linear programming
[Kleinecke, 19717; the use of a flatness criterion [Emsellem and
de Marsily, 1971]; the multiple-objective decision process
{Neuman, 1973]; the Galerkin method [Frind and Pinder,
1973]; the algebraic approach [Sagar et al., 1975]; the induc-
tive method [Nutbrown, 1975]; linear programming and qua-
dratic programming [Hefez, 1975]; minimization of a qua-
dratic objective function with penalty function [Navarro,
1977]; and the matrix inversion method allied with kriging
[Yeh et al.,, 1983]. To minimize the instability and nonunique-
ness, regularity conditions are often required. Table 1 presents
some typical parameter identification models that are based
upon the equation error criterion.

Qutput Error Criterion (Indirect Method
as Classified by Neuman)

The criterion used in this approach is generally the mini-
mization of a “norm” of the difference between observed and
calculated heads at specified observation points. The main
advantage of this approach is that the formulation of the in-
verse problem is applicable to the situation where the number
of observations is limited, and it does not require differ-
entiation of the measured data. A disadvantage of this ap-
proach is that minimization is usually nonlinear and often
nonconvex. Various optimization algorithms have been used
to perform the minimization. In general, an algorithm starts
from a set of initial estimates of the parameters and improves
it in an iterative manner until the system model response is
sufficiently close to that of the observations.

Control-oriented techniques, stemming from the concept of
quasilinearization of Bellman and Kalaba [1965], have been
developed for aquifer parameter identification. Among the
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published works in parameter identification we may mention
the following: quasilinearization [Yeh and Tauxe, 1971; DiS-
tefano and Rath, 1975]; minimax and linear programming
[Yeh and Becker, 1973]; and maximum principle [Lin and
Yeh, 1974], Yakowitz and Noren [1976). Vermuri and Karplus
[1969] formulated the inverse problem in terms of optimal
control and solved it by a gradient procedure. Chen et al.
[1974] and Chavent [1975] also treated the problem in an
optimal control approach and solved it by both a steepest
descent method and conjugate gradient method. Kalman fil-
tering techniques have also been proposed in the literature for
parameter identification [McLaughlin, 1975, Wilson et al.,
1978]. Kitanidis and Vomvoris [1983] used the technique of
maximum likelihood estimation and kriging.

Mathematical programming techniques developed in the
field of operations research have been utilized for solving the
inverse problem of parameter identification in groundwater
hydrology and in the ficld of petroleum engineering. Among
the published works we may mention the following: gradient
search procedures [Jacquard and Jain, 1965; Thomas et al.,
19723; decomposition and multilevel optimization [Haimes et
al., 1968]; linear programming [Coats et al., 1970; Slater and
Durrer, 1971; Yeh, 197%5a, b]; quadratic programming [Yeh,
1975a, b; Chang and Yeh, 1976]; the Gauss-Newton method
[Jahns, 1966; McLaughlin, 1975]; the modified Gauss-Newton
method [Yoon and Yeh, 1976; Yeh and Yoon, 1976; Cooley,
1977, 1982]; the Newton-Raphson method [Neuman and Ya-
kowitz, 1979]; and conjugate gradient method [Neuman,
1980]. Some typical parameter identification models, using the
output error criterion, are tabulated in Table 2.

PROBLEM STATEMENT

We will use a typical groundwater flow equation to illus-
trate some typical techniques that have been used to solve the
inverse problem. Consider an unsteady flow in an inhomoge-
neous, isotropic, and confined aquifer for which the governing
equation can be represented by

0 Oh d oh oh
5;<T5;>-+5<T'@')—Q+Sa (1)

subject to the following initial and boundary conditions:

h(X, y, 0) = hO(—x’ y) X, y € Q
h(x’ y7 t) = hl(x’ yv t) X, ya € an (2)
ch
T = hay(x, y, t) x, y € 0Q,
where
h(x, y, t) head;
T(x, y) transmissivity;
S storage coefficient;
Q(x, y) source-sink term (known);
X, y Sspace variables;
t time;
Q flow region;

dQ boundary of the aquifer (6Q, U 0Q, = Q);
normal derivative;
specified functions.

For illustrational purposes, let us assume that the storage
coefficient is known and the parameter chosen for identifi-
cation is the transmissivity function, T'(x, y), which is assumed
to be time invariant. In general, a numerical scheme is re-
quired to obtain solutions of (1) subject to conditions (2), pro-

vided that parameter values are properly estimated. Various
finite-difference or finite-element methods have been devel-
oped for numerical simulation studies. In solving the inverse
problem, it is essential to have an efficient forward solution
scheme, particularly when using an iterative nonlinear least
square estimation. An example is the following classical
Crank-Nicolson scheme:

Ty (e - ;" HiAx)?
-T- 1/2_j(hi.j"+ - hy_ 1,j"+ l)/(A’C)z
+ T2 i1 " — by )(AX)?
- T._ 1/2,1(1".',1" —h,_ 1,,'")/(AX)2]
+ 3T e rjalbee " — B 2T DAY
= Tijm 2l " = ey T HAAY)?
+ Tjevalhiged” — hi "
= Tj-r1plhi " — hi,j—-ln)/(Ay)z]
= Qi+ Sthi"" " — by /AL 3)

The above finite-difference equations can be solved by an
alternating direction method [Douglas, 1962], which is locally
second-order correct in space and time.

PARAMETER DIMENSION AND PARAMETERIZATION

Parameters, such as transmissivity, are continuous functions
of the spatial variables. For identification purposes, a continu-
ous function must be approximated by a finite dimensional
form. The reduction of parameter dimension is done by pa-
rameterization. There are two ways that have been proposed
in the literature.

Zonation Method

In this approach, the flow region is divided into a number
of subregions, or zones, and a constant parameter value is
used to characterize each zone. The unknown transmissivity
function is then represented by a number of constants which is
equal to the number of zones. Hence the dimension of param-
eterization (or parameter dimension) is then represented by
the number of zones. Here, we mention the work of Coats et
al. [1970], Emsellem and de Marsily [1971], Yeh and Yoon
[1976], and Cooley [1977, 1979].

Interpolation Method

If finite elements are used as the interpolation method, the
flow region is divided into a number of elements connected by
a number of nodes. Each node is associated with a chosen
local basis function. The unknown transmissivity function is
then approximated by a linear combination of the basis func-
tions, where the parameter dimension corresponds to the
number of unknown nodal transmissivity values. Here, we
mention the work of DiStefano and Rath [1975], Yoon and
Yeh [1976], and Yeh and Yoon [1981]. In the context of
interpolation, other schemes have also been used to approxi-
mate the transmissivity distribution, such as spline [Sagar et
al., 1975; Yakowitz and Noren, 1976], polynomial method
[Garay et al., 1976], and kriging [Clifton and Neuman, 1982].
The reduction of the number of unknown parameters by rep-
resenting the parameters by a geostatistical structure as sug-
gested by Kitanidis and Vomvoris [1983] can also be classified
under the interpolation method.

However, one problem still remains, i, how to optimally
determine the shape of zones in the zonation case or how to
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optimally determine the location of nodes (nodal transmissivi-
ties) in the interpolation case. Most of the published work
relies upon a trial-and-error approach or hydrological map-
ping. However, a recent paper by Sun and Yeh [1985] suggests
a systematic way to identify the parameter structure.

INVERSE SOLUTION METHODS

Generalized Matrix Method Based Upon
the Equation Error Criterion

When equation error criterion is employed for parameter
estimation, it requires an explicit formulation of the unknown
parameters. Suppose head observations are available at each
of the grid points and these observations are substituted into
(3); then the Crank-Nicolson scheme can be rewritten as

(hyay Y2 — h DT — (h, 12
—hioy AT+ (hi.j+ln+”2 — hi " UT,
. (hi‘jn+ 12 _ hi,j—1"+ 1/2)7;‘1_1 + (hi+1,j"+ 1/2
+ hi—l.j"".ll2 + hi.j+1"+”2 + hi,j—1n+1/2 - 4hi,j"+”2)Ti,j
2Ax)?

= At S(h:lj+ 1 _ h,-,j") + Z(AX)ZQ + Ei,j"+1/2 @

where Ay is assumed to be equal to Ax, and
hi'jn*‘ 1/2 %(hi,jn + hi,j"+ 1)
Tvvy2;= 3Ty + Tiwr)

To account for the lack of equality, an unknown error term
g, ;" Y2 is added to (4). In practice, only 2 limited number of
field observations is available. Interpolation schemes, such as
cubic splines [ Yakowitz and Noren, 1976] and kriging [Yeh et
al., 19837 have been used in the past to obtain head values at
every computational grid associated with the numerical
scheme that is based upon either finite-difference of finite-
element approximations. The error term consists of interpola-
tion errors as well as noise in observations. Equation (4) can
be simplified to

ArTg=br+8r t=1,2,"',N (5)

where

A, coefficient matrix, a function of h;

T, transmissivity vector containing transmissivity values
at all grid points;

N total number of time steps;

b, column vector, a function of h.

In a more compact matrix form, this becomes

AT,=b+¢ (6)
where
A=[A4,7, A7, -, AT
b= [blr, b2T7 ) bNT]T
= [811, EzT- tTy aNT]T

T is a transpose operator when used as a superscript. It
should be noted that whether finite difference or finite element
is used as the forward solution method, the resulting equation
error will always have the form of (6). However, we have used
a typical finite-difference method to demonstrate how to for-
mulate the inverse problem by the equation error criterion.
The advantage of this formulation is that (6) is linear, and T,
can be determined by minimizing the equation error &.

From (6), the least squares error (or residual sum of squares)

can be expressed by
eTe = (AT, — (AT, — b) ™

Minimizing the least square errof, the transmissivity vector
can be estimated as

T, =(AT4)" 147D 8)

where ’T; is the estimated transmissivity vector of T,. Note that
solution (8) implicitly assumes homoscedasticity and lack of
correlation among residuals. The solution is also highly de-
pendent on the level of discretization used in the numerical
solution of the governing equation. Another disadvantage is
that solution of (8) is generally unstable in the presence of
noise.

Gauss-Newton Minimization Based Upon
the Output Error Criterion

For modeling purposes, the objective is to determine T(x, y)
from a limited number of observations of h(x, y, t) scattered in
the field so that a certain criterion is optimized. If the classical
least square error is used to represent the output error, the
objective function to be minimized is

min J = [hp — hp*17[hp — hp*] 9
T(x, ¥
where hy, is the vector of calculated heads at observation wells,
based upon some estimated values of parameters, and hp* is
the vector of observed heads.

For identification purposes, T(x, y) can be parameterized by
either a zonation or interpolation method as mentioned ear-
lier.

The Gauss-Newton algorithm has proven to be an effective
algorithm to perform minimization. The original and modified
version of the algorithm has been used by many researchers in
the past in solving the inverse problem, e.g., Jacquard and Jain
[1965]; Jahns [1966], Thomas et al. [1972), Gavalas et al.
(19761, Yoon and Yeh [1976], and Cooley [1977, 1982]. The
popularity of the algorithm stems from the fact that it does
not require the calculation of the Hessian matrix as is required
by the Newton method and the rate of convergence is superior
when compared to the classical gradient searching procedures.
The algorithm is basically developed for unconstrained mini-
mization. However, constraints such as upper and lower
bounds are easily incorporated in the algorithm with minor
modifications. The algorithm starts with a set of initial esti-
mates of parameters and converges to a local optimum. If the
objective function is convex, the local optimum would be the
global optimum. Due to the presence of noise in the observa-
tions, the inverse problem is usually nonconvex, and hence
only a local optimum can be assured in the minimization.

Let T be a vector of parameters that contains (7, T, ="
T,]. The algorithm generates the following parameter se-
quence for an unconstrained minimization problem:

Frtt = Tk pkdk (10)
with

ARdE = gk (11
where

A =TI THTTI A T, (L % L);

g =0 (T} Tho( T*) — hp*], (L x 1); B

Jp Jacobian matrix of head with respect to T, (M x L);
p* step size, (scalar);

4 Gauss-Newton direction vector, (L x 1);

M number of observations;

L parameter dimension.
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TABLE 2. Parameter Identification Models, Output Error Criteria

Prior
Parameters Information Inverse
Applicable Numerical to be or Solution Special Features
Conditions Method  Identified Constraints Procedure and Comments Reference
Two dimensional, finite T, S none Gauss-Newton for oil Jacquard and
confined, difference reservoir Jain [1965]
unsteady state
Two dimensional, finite T, S none Gauss-Newton statistical measures Jahns [1966]
confined, difference of estimated para-
unsteady state meters are provided;
for oil reservoir

Two dimensional, finite K, S none maximum principle computation Vemuri and
unconfined difference in conjunction carried out Karplus [1969]
unsteady state with steepest on a hybrid

descent method computer

One dimensional, finite D none quazilinearlization Yeh and
unconfined, difference Tauxe [1971]
unsteady state

Two dimensional, finite K, ¢ upper-lower Gauss-Newton, step  box-type constraints Thomas et. al. [1972]

unsteady state difference bounds on size is determined are imposed on
parameters by quadratic inter- parameters; for
polation oil reservoir
One dimensional, finite T, S, K'/b' none quasilinearization radial flow Marino and
leaky aquifer, difference Yeh [1973]
Two dimensional, finite K, ¢ none steepest descent parameters are con- Chen et. al. [1974]
unsteady state difference and conjugate sidered as continuous
gradient function of position;
gradients obtained
by optimal control
theory
Two dimensional, finite K, ¢ upper-lower steepest for oil reservoir; Chavent et. al. [1975]
unsteady state difference bounds on descent gradients are
parameters generated by solving
the adjoint model

One dimensional, finite D none quasilinearization; compares five Yeh [19754]

unconfined, difference maximum principle;  different
unsteady state gradient; influence algorithms
coefficient; linear
programming
One dimensional, finite D upper and lower Quadratic radial flow Yeh [1975b]
confined, difference bounds; linear programming
unsteady state constraints
Two dimensional, finite T structure quazilearization transmissivity Distefano and
confined, element constraints function is Rath [1975]
unsteady state represented by
finite element
One dimensional finite K, ¢ mean and conjugate gra- a Bayesian Gavalas et. al.
difference covariance dient, Gauss- penalty term [1976]
matrix of Newton, Marquardt  is added to the
parameters objective function
Two dimensional finite K upper-lower Gauss-Newton permeability Yoon and
confined, element bounds on with Rosen’s function is Yeh [1976]
unsteady state parameters gradient represented
projection by finite
element
Two dimensional finite T upper-lower Gauss-Newton stepwise zoning Yeh and
unconfined, difference bounds on with Rosen’s procedure using Yoon [1976]
unsteady state parameters gradient statistical measures
projection of parameters;
covariance matrix
of estimated parameters
is provided
Two dimensional, finite K, Q none modified statistical measures Cooley [1977]
steady state clement flux Gauss-Newton of model and
(nonlinear parameters are
regression by provided
linearization)

One dimensional &, k mean and Gauss-Newton for oil reservoir; Shah et. al.
covariance covariance matrix [1978]
matrix of estimated parameter
of parameters is provided;

determines optimum
level of para-
meterization
Two dimensional finite T prior estimation Newton-Raphson covariance matrix Neuman and
steady state element of parameters of parameter Yakowitz [1979]

added to objective

estimates is
provided
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TABLE 2. (continued)
Prior
Parameters Information Inverse
Applicable Numerical to be or Solution Special Features
Conditions Method  Identified Constraints Procedure and Comments Reference
Two dimensional finite T prior estimation Conjugate variational Neuman [1980]
steady state element of parameters gradient theory is used;
added to objective use log trans-
missivities
Two dimensional finite T upper-lower Gauss-Newton finite element is Yeh and
confined, difference bounds on with Rosen’s used to represent Yoon [1981]
unsteady state parameters gradient T(x, y); determines
projection optimum parameter
dimension; considers
parameter uncertainty
Two dimensional finite K, Q prior estimates modified two types of Cooley [1982]
steady state element flux of parameters Gauss-Newton prior information
with or without (nonlinear regression are included in
reliability added by linearization) the analysis
to objective
Steady state K point measure- maximum parameter is Kitanidis and
ment of likelihood represented as Vomvoris [1983]
permability and kriging a “random field”
and hydraulic
head
Two dimensional finite K none Gauss-Newton generalized least Sadeghipour and
confined, element with Rosen’s squares; considers Yeh [1984]
unsteady state gradient correlated errors
projection
Two dimensional finite T point measurements cokriging parameter is Hoeksema and
steady state difference of transmissivity represented as Kitanidis [1984]
and head a random field
Two dimensional finite T none Gauss-Newton identification Sun and
confined, element of parameter Yeh [1985]
unsteady state structure

Two dimensional, analytical T

steady state solution of transmissivity
and head
Two dimensional finite T point measurements
steady state, difference of transmissivity

leakage included and head

point measurements Gaussian

parameter is
represented as
a random field
comparison of
Gaussian
conditional
mean and
kriging estimation

Dagan [1985]
conditioned
mean
Hoeksema and
Kitanidis [1985]

Table presents typical models in chronological order. D, diffusivity; ¢, porosity. See Table 1 for additional definitions.

The step size p*, a scalar, can be determined by a quadratic
interpolation scheme such that J(T**') < J(T*), or simply by
a trial-and-error procedure. Occasionally, the direction matrix
[JpTJp] may become ill-conditioned. Corrections must be
made in order for the algorithm to continue, and the methods
suggested by Levenberg [1944] and Marquardt [1963] are a
modification of the Gauss-Newton direction. As stated earlier,
the basic Gauss-Newton algorithm does not handle con-
straints. If constraints are imposed on the parameters, such as
the upper and lower bounds, the Gauss-Newton algorithm
can be allied with a gradient projection technique.

The elements of the Jacobian matrix are represented by the
sensitivity coefficients,

—oh, oh, 8hy ]
0T, 0T, T,
Ohy  Ohy  Ohy
8T, 0T, oT,

Jp= (12)
Ohy Ohy by
| 51, T, T, |

where M is the total number of observations, and L is the
total number of parameters. The transpose of the Jacobian

matrix is
Coh ohy O]
0T, 0T, 0T,
0T, 0T, 0T,
I, = 2 2 2 (13)
hy Oy
| 6T, OT, oT, |

In solving the inverse problem, an efficient method must be
used in the calculation of the sensitivity coefficients. We will
now focus our attention on the techniques developed for cal-
culating the sensitivity coefficients.

COMPUTATION OF SENSITIVITY COEFFICIENTS

Sensitivity coefficients, the partial derivatives of head with
respect to each of the parameters, play an important role in
the solution of the inverse problem. In the Gauss-Newton
algorithm, elements of the Jacobian matrix are represented by
the sensitivity coefficients, 0h;/0T,, i = 1,..., M, I=1,...,L.If
h is the head vector, the sensitivity coefficients are 8h/0T,
[ =1, ..., L. Literature review indicates that three methods
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have been used in the past in the calculation of sensitivity
coefficients. We will summarize these methods as follows.

Influence Coefficient Method
The Influence Coefficient method [Becker and Yeh, 1972]
uses the concept of parameter perturbation. The !th row of
JpT is approximated by
oh; - (T + ATe) — h(T)
oT, AT,

i=1-- M (14)
where AT] is the small increment of T, and e, is the Ith unit
vector. The values of i(T) and W T+ ATe,) are obtained by
solving the governing equation (by simulation), subject to the
imposed initial and boundary conditions. The method requires
perturbing each parameter one at a time. If there are L param-
eters to be identified, the governing equation has to be solved
(simulated) (L + 1) times for each iteration in the nonlinear
least squares minimization to numerically produce the sensi-
tivity coefficients. The numerical representation of J,T is
called the influence coefficient matrix (Becker and Yeh, 1972].
The elements of the influence coefficient matrix, represented
by a;,, are numerical approximations of the sensitivity coef-
ficients,

hl hz .......... hM
7‘1 a, Ayg crorreeens Qg
7"2 asy, Qyy  rorreeeens Ay (15)
n a, Qpg rvrereens Ay

Each element in the matrix represents the ratio of change in
the head to the change in a particular parameter. The value of
AT is a small increment of T; by which parameter 7, is per-
turbed. The appropriate value of AT, is usually determined on
a trial-and-error basis. Bard [1974] has suggested some guide-
lines in choosing the value of AT,

Sensitivity Equation Method

In this approach, a set of sensitivity equations are obtained
by taking the partial derivatives with respect to each parame-
ter in the governing equation and initial and boundary con-
ditions. After taking the partial derivatives, the following set of
sensitivity equations result:

P oh . 0h 5 oh
2 r A + 20T AT, = s T
Ox ox Jy dy B ot

N 6 (8T 6h\ & (4T oh Imt 1
6x \0T; 0x) 9y \aT, oy I

The associated initial and boundary condition are

Oh(x, y,0)

= I=1,--- L
oT;
dh(x, y, 1)
=0 =1,---, 17
oT, ! L (17
a(ﬁh)
aT, oT oh
T = —— — = ..
on 3T, én f=1L- L

The numerical values of Jh/0x and 8h/dy are obtained from
the solution of the governing equation. If we replace (0h/0T)

by h and consider the term

] oT oh 3 oT oh
Ox\0T, dx) dy 0T, dy

as @, the set of sensitivity equations would be of the same
form as that of the governing equation. Hence the solution
method used for solving the governing equation can be used
to solve the set of sensitivity equations. The number of simula-
tion runs required to generate the sensitivity coefficients per
iteration is (L + 1), which is the same as that of the influence
coeflicient method.

Variational Method

The variational method was first used for solving the in-
verse problem of parameter identification by Jacquard and
Jain [1965] and then by Carter et al. [1974, 1982] associated
with finite difference schemes. Sun and Yeh [1985] extended
the method to the case of a finite element scheme. Following
Carter et al, [1974], the sensitivity coefficients can be com-
puted by the following equation:

ohW

1
W=Jfqu’(x,y,t—r)Vh(x,y,t)drdxdy
éT o

€x)

(18)

J=12 N, i=12-"-, N,

where () is the exclusive subdomain of node i as defined by
Sun and Yeh; V is the gradient operator; h(x, y, t) is the
solution of the governing equation; N, is the number of ob-
servation wells; N, is the total number of nodes used in the
numerical solution; g’(x, ¥, t) is the time derivative of q(x, y, 1),
which is the solution of the following set of adjoint equations:

G, dq ‘ é oq dq
—|rT=|+=|7¥ ’ =5—+G,
ox 6x:l oy l: dy S at Gy y)H()

subject to the following initial and boundary conditions:

(19)

4.7 0=0  (x)eQ
ax y» =0 (x,y)edQ, (20)
dq -
n (x,. »t)=0 (x, y) e 0Q,
where
1
Gilx, y) = P e
J
Gix,y)=0 otherwise
(21
H{)=0 t<0
H(t) =1 t>0

P; is the area of subdomain Q.

Note that the adjoint equation for ¢(x, y, ¢) (equation (19)
has the same form as that of the governing equation for h(x, y,
t} (equation (1)), and hence the same numerical scheme can be
used to solve h and ¢. By solving the governing equation one
time only and solving the adjoint equation for each observa-
tion well, all sensitivity coeflicients, [@AY/BT™] (j= 1, 2,
©y Noji= 1,2, -+, N,), can be produced. Hence the
number of simulation runs required to calulate the sensitivity
coefficients per iteration is (N, + 1), as compared to (L+1),
which is required by either the influence coefficient method or
the sensitivity equation method.

Comparing the above-mentioned three methods in the cal-
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culation of sensitivity coefficients, it is clear that the vari-
ational method would be advantageous if L > N,, the case
where the number of parameters to be identified is greater
than the number of observation wells. On the other hand, if
No > L, the influence coefficient and sensitivity equation
methods are preferred. To avoid instability when data con-
tains noise, the number of parameters to be identifiea is usu-
ally less than the number of observation wells. In using the
sensitivity equation method, caution must be exercised in that
oh,/0T, varies much more rapidly with time than h. DiStefano
and Rath [1975] pointed out that in order to obtain a set of
sensitivity coefficients with acceptable accuracy, much smaller
time steps are required in the simulation runs. Whereas in the
influence coefficient method, the perturbation vector AT can
be appropriately chosen to cause sufficient change in AT, 1)
and yet small enough so that numerical approximations of
sensitivity coefficients are valid. However, the sensitivity and
variational methods are intrinsicaily much more accurate. The
need for an efficient method for calculating the sensitivity co-
efficients in solving inverse problems has also been pointed
out by Dogru and Seinfeld {1981], McElwee [1982], and Sykes
et al. [1985].

PARAMETER UNCERTAINTY AND OPTIMUM PARAMETER
DIMENSION

The identification of parameters in a distributed parameter
system should, in principle, include the determination of both
the parameter structure and its value. If zonation is used to
parameterize the unknown parameters, parameter structure is
represented by the number and shape of zones. On the other
hand, if finite element is used for parameterization, parameter
structure concerns the number and location of nodal values of
parameters. Emsellem and de Marsily {1971} were the first to
consider the problem of optimal zoning pattern. Yeh and
Yoon [1976] suggested a systematic procedure based upon a
statistical criterion for the determination of an optimum
zoning pattern. Shah et al. [1978] showed the relationship
between the optimal dimension of parameterization and ob-
servations in considerable depth. The necessity to limit the
dimension of parameterization has been further studied by
Yeh and Yoon [1981] and Yeh et al. [1983] and Kitanidis and
Vomvoris [1983]. The dimension of parameterization is di-
rectly related to the quantity and quality of data (observa-
tions). In field practice, the number of observations is limited
and observations are corrupted with noise. Without control-
ling parameter dimension, instability often results [ Yakowitz
and Duckstein, 19807, If instability occurs in the inverse prob-
lem solution, parameters will become unreasonably small
(sometimes negative, which is physically impossible) and/or
large, if parameters are not constrained. In the constrained
minimization, instability is characterized by the fact that
during the solution process parameter values are bouncing
back and forth between the upper and lower bounds. Re-
duction of parameter dimension can make the inverse solution
stable. It has been generally understood that as the number of
zones (in the zonation case) is increased, the modeling error
(least squares) decreases while the error in parameter uncer-
tainiy increases. A trade off of the two types of errors can then
be made from which an optimum parameter dimension can be
determined. A standard procedure is to gradually increase the
parameter dimension, starting from the homogeneous case,
and calculate the two types of errors for each parameter di-
mension. The error in parameter uncertainty can be repre-
sented by a norm of the covariance matrix of the estimated
parameters [ Yeh and Yoon, 1976; Shah et al., 1978].

Calculation of Statistics

The covariance matrix of the estimated parameters is de-
fined by

Cov(T)=E{(T-TXT-D7} (22)
where
T estimated parameters;
T true parameters;
E mathematical expectation;
T transpose of a vector when used as superscript.

An approximation of the covariance matrix of the estimated
parameters in nonlinear regression can be represented by the
following form [Bard, 1974; Yeh and Yoon, 1976, 1981; Shah
et al., 1978]:

JD)

Cov(’f’)=M_L

Am1! 23)

where
J(T) least squares error;

M number of observations;

L parameter dimension;

4 [J DTJ ol

Jp Jacobian matrix of h with respect to T.

A norm of the covariance matrix has been used to represent
the error in parameter uncertainty. Norms, such as trace, spec-
tral radius (maximum eigen value), and determinant have been
used in the literature. Equation (23) also assumes homosce-
dasticity and uncorrelated errors. This assumption is generally
not satisfied and the actual covariance may be much higher

than that given by (23).
The covariance matrix of the estimated parameters also

provides information regarding the reliability of each of the
estimated parameters. A well-estimated parameter is generally
characterized by a small variance as compared to an insen-
sitive parameter that is associated with a large variance. By
definition, the correlation matrix of the estimated parameters
is

_ (Cucu)l/z (Cucu_)”2
R= (24)
‘L1 CLL

2 PR
(CLLcll)“ (CLLCLL)”

where ¢;;'s are elements of the covariance matrix of the esti-
mated parameter. The more sensitive the parameter, the closer
and quicker the parameter will converge. A correlation analy-
sis of the estimated parameters would indicate the degree of
interdependence among the parameters with respect to the
objective function. Correlation of parameters is called the col-
linearity problem. Such problem can cause slow rate of con-
vergence in minimization and in most cases result in nonopti-
mal parameter estimates. A more rigorous treatment of the
collinearity problem is to use the more sophisticated statistical
techniques, such as ridge regression [Cooley, 1977] and the
method of principal components.

Cooley [1977] treated the inverse problem as a problem in
nonlinear regression. A finite element scheme was used to
solve the confined, steady state groundwater flow equation.
The parameters identified included transmissivity, hydraulic
conductance, source-sink strength, and boundary flux. The
nonlinear system of normal equations was solved by the tech-
nique of quasilinearization [Bellman and Kalaba, 1965] and a
modified Gauss-Newton algorithm. Beale’s nonlinearity mea-
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sure was used to test the applicability of linear statistical
analysis for the original nonlinear regression problem. The
advantage of using a standard regression procedure for pa-
rameter identification is that it allows for the application of
established, formal statistical techniques for testing the validi-
ty of assumptions and model fit as well as estimating the
reliability and significance of the model and its parameters.
However, caution must be exercised, since statistics derived
from linear statistical theory are not strictly applicable to the
nonlinear case.

BAYESIAN ESTIMATION

Bayesian estimation methods that incorporate prior infor-
mation have also been applied to parameter identification
[e.g.. Gavalas et al, 1976]. The geological information re-
quired for Bayesian estimation includes the mean and covari-
ance matrix of the parameters which are

E{T} = T,.., (25)
E{(T; - Tmean)(y} - Tmean)} = rij (26)

The values of T,,_, and R(r;;) are considered to be known and
are the prior information which can be obtained from geologi-
cal measurements in the field. Gavalas et al. have shown that
Bayesian estimation reduces to a quadratic minimization
problem, provided the parameters and the measurement errors
are normally distributed and the model is linear in the param-
eters. When these conditions are not satisfied, a rigorous ap-
plication of Bayesian estimation is impractical.

Composite Objective Function

Gaalas et al, [1976] proposed the following practical ap-
proach which is akin to least Squares minimization where the
objective function is

M

=3

i=1 Uy

1 - —
P (hy — h*)* + (T — Toean) ' RNT—T

mcnn)

@
where 1is a weighting factor (0 < A < Dando? i=1,2 -,
M is the variance of the measurement error which is con-
sidered to be known. The second term in the objective func-
tion is the Bayesian term which penalizes the weighted devi-
ation of the parameters from their mean value. It, in turn,
requires the parameter to follow some preconceived pattern
during the minimization process. Shah et al. [1978] have dem-
onstrated that if reliable prior information is available, Bayes-
ian estimation will lead to a smaller variance of the error of
estimation.

Kalman Filter

The technique of Kalman filtering was originally developed
in the field of optimal control [Kalman, 1960]. It has been
successfully applied in aerospace engineering for the problem
of optimal estimation and control of vehicle trajectory. The
application of Kalman filtering to parameter estimation in
groundwater requires expressing the groundwater model in
terms of a state-space formulation that consists of a vector
state equation and a vector observation equation. For param-
eter estimation, the state vector is augmented to include the
parameter vector as another state variable. If the errors in the
state and observation equations have zero mean and are of
white Gaussian process with known covariance matrices,
Kalman filtering can be applied for simultaneous, recursive
state, and parameter estimation. Since prior information is
generally required in the application of Kalman filtering, it

. can be classified in the Bayesian estimation category. Wilson

et al. [1978] used an extended Kalman filter for parameter
estimation in groundwater. Their approach permits the utili-
zation of prior information about the parameters and infor-

" mation taken from input-output measurements to improve es-

timates of parameters as well as the system state.

OTHER STATISTICAL METHODS THAT INCORPORATE
PRIOR INFORMATION

Neuman and Yakowitz [1979] proposed a statistical ap-
proach to the inverse problem of parameter estimation. Their
approach differs from the Bayesian estimation of Gavalas et al.
[1976] in that the prior information may include actual values
of transmissivity determined from pumping tests or other
measurements at specific locations in the aquifer, or it may be
based on statistical information about the spatial variability of
transmissivities (not their actual values) in other aquifers con-
sisting of similar materials [(Neuman and Y akowitz, 19797]. The
composite least squares criterion proposed by Neuman and
Yakowitz is similar to (27) and can be expressed as

= =DV, [h* — £(T)]

AT =TV NT*-T) (28

where

T* prior estimate of T
Vr known symmetric positive definite matrix;
Vi known matrix, symmetric and positive definite:
4 unknown positive parameter; ’
S(T) model solution;
h*  observed head.

The observed head (h*) and the prior estimates of transmissiv-
ity (T*) are related to true head (h) and true transmissivity (T
by

h*=h4¢
- (29)
T*=T+y
and
E)=0
(30)
Var (¢) = 0,2V,
E(v)=0
(31)

Var (v) = 0,2V,

It is assumed that Vi and Vy are known, but gy and o do not
enter the computations. The second term in the composite
objective function provides a smoothing effect in the mini-
mization. Neuman and Yakowitz proposed two methods,
called cross-validation and comparative residual analysis, to
select the optimum value of A, Neuman [1980] developed an
efficient conjugate gradient algorithm for performing the mini-
mization. He extended the variational method developed by
Chavent [1975] for calculating the gradient with respect to the
parameter in the case of generalized nonlinear least squares.
The variational method presented by Chavent and Neuman s
conceptually similar to Carter et al, [1974], but differs in the
objectives. Carter et al. developed expressions which can be
used to calculate the partial derivative of head with respect to
the parameter, while Chavent and Neuman seek to compute
the partial derivative of the least square criterion with respect
to the parameter.

The composite objective function presented by Aboufirassi
and Marino [1984b] is again conceptually similar to (27). They
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used kriging to estimate the missing values of head and the
value of the error covariance matrix, while cokriging [Aboufi-
rassi and Marino, 1984a] was used to estimate T* and the
associated error covariance matrix. Cokriging [Journel and
Huijbregts, 1978], an extension of kriging to two or more
variables, can be used to improve the accuracy of estimation
of a variable that is not sufficiently sampled by considering its
spatial correlation with other variables that are better sam-
pled.

Cooley [1982] proposed a method to incorporate prior in-
formation on the parameters into the nonlinear regression
model he developed [Cooley, 1977} The primary purpose of
Cooley’s work is the incorporation of prior information of
unknown reliability, the approach is an extension of ridge
regression. A secondary objective of Cooley’s work is to incor-
porate Theil's [1963] into Cooley’s [1977] nonlinear regres-
sion model where at least some prior information of known
reliability is available. The approach is non-Bayesian in the
sense that no prior distribution of parameter is assumed. The
approach also differs from the method proposed by Neuman
and Yakowitz [1979] and Neuman [1980] primarily in two
ways: (1) the prior information in Cooley’s work is considered
to consist of general nonlinear combinations of several types
of parameters as opposed to direct estimates of a single type of
parameter (transmissivity) and (2) the way in which the covari-
ance structure of the model is determined. Nonstochastic prior
information, as represented by a set of approximate linearized
equations, is incorporated in the ridge regression’ previously
developed by Cooley.

As was presented in Cooley [1982], the prior information
having unknown reliability can be incorporated into the stan-
dard weighted least squares objective function by adding a
penalty function. The resulting composite objective function
consists of two terms. The first term is the weighted sum of
squared errors in the hydraulic head, and the second term is
sum of the weighted errors in the parameters. Cooley also
introduced two scalars k and f in the composite objective
function which can be adjusted to minimize the sum of the
squared errors in the computed parameters.

Kitanidis and Vomvoris [1983] proposed a geostatistical ap-
proach for solving the inverse problem. Their method consists
of two main steps: (1) the structure of the parameter field is
identified, i.e., mathematical representations of the variogram
and the trend are selected and their parameters are es-
tablished, and (2) kriging is applied to provide minimum vari-
ance and unbiased point estimates of hydrogeological parame-
ters using all available information. In their approach, it is
assumed that several point measurements of head and trans-
missivities (in Jogarithms) are available. In effect, parame-
terization is achieved by representing the hydrogeological pa-
rameters as a random field which can be characterized by the
variogram and trend with a small number of parameters. In
fact, the parameters to be estimated at the first step are the
ones associated with the variogram and trend, thus drastically
reducing the parameter dimension. As was demonstrated by
Kitanidis and Vomvoris [1983], the reduction of parameter
dimension has resuited in stable inverse problem solutions
with the presence of errors. Hoeksema and Kitanidis [1984]
have applied the geostatistical approach to the case of two-
dimensional steady state flow. A finite difference numerical
model of groundwater flow was used to relate the head and
transmissivity variability and cokriging was used to estimate
the unknown transmissivity field. Dagan [1985] has also con-
sidered the geostatistical approach, but an analytical tech-

nique and Gaussian conditional mean are used in place of
Kriging. Hoeksema and Kitanidis [1985] made a comparative
study of Dagan’s approach and Kriging estimation. In using
the geostatistical approach, it is implicitly assumed that trans-
missivity has a low variability.

Correlation of error residuals, in both time and spatial
domain, may occur for a number of reasons. Successive €rrors
in time series tend to be positively correlated. Also, observa-
tions taken from adjacent pumping wells are affected by simi-
lar external conditions and may result in similar residuals. The
presence of correlation in error terms suggests that there is
additional information in the data that has to be included in
the least squares minimization model. A well-established
method which can be used to perform such minimization is
the generalized least squares developed in the field of econo-
metrics. In the case of an unsteady state flow, the error vector
for each time period can be approximated by a stationary
first-order autoregression process [Judge et al. 1980]. A
method suggested by Sadeghipour and Yeh [1984] requires the
estimation of lag-one serial coefficient (p) and the common
covariance matrix (W) for the error vector. Using the esti-
mated values of p and W, the generalized least squares
method as demonstrated by Sadeghipour and Yeh provides
parameter estimates with minimum variance when errors are
correlated. If p and W are fixed and errors are normally dis-
tributed, the generalized least squares criterion corresponds to
the log likelihood function.

In practice, p and W are unknown. Sadeghipour and Yeh
[1984] proposed a two-step procedure. In step one, while as-
suming p = 0 and W = I, the minimization produces the ordi-
nary least squares parameter estimates. These estimates are
used to estimate p and W. In step two, the newly estimated p
and W are used to perform the generalized least squares mini-
mization. The process continues until convergence is reached.

SUMMARY AND FUTURE RESEARCH DIRECTION

The inverse problem of parameter identification has been
classified by the performance criterion used in the solution. All
published methods for solving the inverse problem belong to
either the eguation error approach or the output error ap-
proach. The output error criterion appears to be widely used
not only in groundwater but also in oil reservoir problems.
Optimization methods originally developed in the fields of
optimal control and operations research have been adopted to
perform minimization. Linear statistical methods have been
used to establish the reliability of the estimated parameters.
Bayesian type of approach has also been used to incorporate
prior information. The inverse problem is inherently ill-posed.
It has been made clear that parameterization is essential, i.e.,
the number of parameters to be identified must be limited. The
number of parameters (parameter dimension) that can be
identified for a given situation depends on the quantity and
quality of the data. Identifiability must be relaxed, since
measurements cannot be made at every spatial point as a
function of time.

Suggested areas for future research are summarized as fol-
lows.

1. So far, only linear statistical methods have been used
for testing the validity and assumptions and model fit as well
as estimating the reliability and significance of the model and
its parameters. However, the inverse problem in groundwater
is basically nonlinear. Future research should be directed
toward the development of nonlinear parameter estimation
theories. However, caution must be exercised in that nonlinear
methods are usually associated with high computational cost,



106 YEH: REVIEW

and their practical applicability must be examined in view of
the fact that linear estimation methods have served well in
many instances.

2. The primary purpose of incorporating the prior infor-
mation into the inverse problem is to reduce the parameter
uncertainty, not to improve the model fit. As a matter of fact,
prior information can only worsen the model fit. The incor-
poration of prior information as a penalty function in the
composite, least square objective function does not affect the
feasible region of minimization, However, if prior information
is used correctly the inverse solution will produce stable and
reliable parameter estimates which will be more useful in
groundwater management and prediction. It is also intuitively
obvious that inaccurate prior information will degrade the
parameter estimates. A future area of research is the devel-
opment of reliable prior parameter estimates that are compat-
ible with sample information.

3. It has been made clear that parameterization must in-
clude the parameter structure and its values. The development
of an efficient and systematic parameter structure identifi-
cation procedure continues to be a future area of research.

4. Due to its level of difficulty, the problem of identifiabil-
ity has received little attention. However, some recently pub-
lished results indicate that an extended identifiability can be
used for groundwater modeling and management. A future
area of research is to continue to study the problem of optimal
pumping design in connection with aquifer parameter identifi-
cation.

Acknowledgments, This research was supported in part by the Na-
tional Science Foundation Grants CEE 8113500 and CEE 8301230,
The author acknowledges the contribution of J. Sadeghipour and N.
Z. Sun, who assisted in the literature review. The in-depth review and
constructive comments made by N. Z. Sun are greatly acknowledged.
The author also thanks the four anonymous reviewers who corrected
various inconsistencies in the original manuscript, and the author has
made an attempt to incorporate all of their suggestions in the revised
version of the manuscript.

BIBLIOGRAPHY

Aboufirassi, M., and M. A. Marino, Kriging of water levels in the
Souss aquifer, Morocco, Math. Geol., 15(4), 537-551, 1983,

Aboufirassi, M., and M. A. Marino, Cokriging of aquifer transmissivi-
ties from field measurements of transmissivity and specific capacity,
Math. Geol., 16(1), 1935, 1984a.

Aboufirassi, M., and M. A. Marino, A geostatistically-based approach
to identification of aquifer transmissivity in Yolo basin, California,
Math. Geol., 16(2), 125-137, 1984,

Anger, G. (Editor), Inverse and Improperly Posed Problems in Differ-
ential Equations, Akademie-Verlag, Berlin, 1979,

Bard, Y., Nonlinear Parameter Estimation, John Wiley, New York,
1974.

Beale, E. M. L., Confidence regions in non-linear estimation, J.R.
Stat. Soc., Ser. B, 22, 41-76, 1960.

Bellman, R, and R. Kabala, Quasilinearization and Nonlinear
Boundary-V alue Problems, 206 pp., Elsevier, New York, 1965.

Beck, A., Parameter Estimation in Engineering Science, John Wiley,
New York, 1977.

Becker, L., and W. W-G. Yeh, Identification of parameters in un-
steady open-channel flows, Water Resour. Res., 8(4), 956-965, 1972,

Birtles, A. B, and E. H. Morel, Calculation of aquifer parameters
from sparse data, Water Resour. Res., 15(4), 832-844, 1979,

Bruch, J. C, Jr., C. M. Lam, and T. M. Simundich, Parameter identifi-
cation in field programs, Water Resour. Res., 10(1), 7379, 1974.

Carter, R. D, L. F,, Kemp, Jr., A. C. Pearce, and D. L. Williams,
Performance matching with constraints, Soc. Pet. Eng. J., 14(2),
187-196, 1974.

Carter, R. D, L. F. Kemp, Jr., and A. C. Pierce, Discussion of com-
parison of sensitivity coefficient calculation methods in automatic
history matching, Soc. Pet. Eng. J., 22(2), 205-208, 1982.

Chang, S, and W. W-G. Yeh, A proposed algorithm for the solution

of the large-scale inverse problem in groundwater, Water Resour.
Res., 12(3), 365-374, 1976.

Chavent, G., Identification of functional parameters in partial differ-
ential equations, in Identification of Parameters in Distributed Sys-
tems, edited by Goodson, R. E. and M. Polis, pp. 31-48, American
Society of Mechanical Engineers, New York, 1974

Chavent, G., About the stability of the optimal control solution of
inverse problems, in Inverse and Improperly Posed Problems in Dif-
ferential Equations, edited by G. Anger, pp. 45-58, Akademie-
Verlag, Berlin, 1979,

Chavent, G., Identification of distributed parameter system: About
the output least square method, its implementation, and identifia-
bility, in Identification and § ystem Parameter Estimation, edited by
R. Isermann, vol. 1, pp. 85-97, Pergamon, New York, 19795,

Chavent, G., Local stability of the output least square parameter
estimation technique, Math. Appl. Comp., 2(1), 3-22, 1983,

Chavent, G., M. Dupuy, and P. Lemonnier, History matching by use
of optimal control theory, Soc. Pet. Eng. J., 15(1), 74-86, 1975.

Chen, W. H,, G. R. Gavalas, J. H. Seinfeld, and M. L. Wasserman, A
new algorithm for automatic historic matching, Soc. Pet. Eng. J,,
14(6), 593-608, 1974.

Clifton, P. M., and S. P, Newman, Effects of kringing and inverse
modeling on conditional simulation of the Avra Valley aquifer in
Southern Arizona, Water Resour. Res., 18(4), 12151234, 1982.

Coats, K. H,, J. R, Dempsey, and J. H. Henderson, A new technique
for determining reservoir description from field performance data,
Soc. Pet. Eng. J., 10(1), 66-74, 1970,

Cooley, R. L., A method of estimating parameters and assessing reli-
ability for models of steady state ground flow, 1, Theory and nu-
merical properties, Water Resources Research, 13(2), 318-324, 1977.

Cooley, R. L, A method for estimating parameters and assessing
reliability for models of steady state groundwater flow, 2, Appli-
cation of statistical analysis, Water Resour. Res., 15(3), 603-617,
1979.

Cooley, R. L., Incorporation of prior information on parameters into
nonlinear regression groundwater flow models, 1, Theory, Water
Resour. Res., 18(4), 965-976, 1982.

Cooley, R. L., Incorporation of prior information on parameter into
nonlinear regression groundwater flow models, 2, Applications,
Water Resour. Res., 19(3), 662-676, 1983.

Cooley, R. L., and P, J. Sinclair, Uniqueness of a model of steady-
state groundwater flow, J. Hydrol,, 31, 245-269, 1976.

Dagan, G., Stochastic modeling of groundwater fow by un-
conditional and conditional probabilities: The inverse problem,
Water Resour. Res., 21(1), 65-72, 1985.

De Coursey, D. G, and W. M. Snyder, Computer oriented method of
optimizing hydrologic model parameters, J. Hydrol,, 9, 34-53, 1969.

Delhome, J. P., Spatial variability and uncertainty in groundwater
flow parameters: A geostatistical approach, Water Resour. Res.,
15(2), 269-280, 1979.

DiStefano, N., and A. Rath, An identification approach to subsurface
hydrological systems, Wazer Resour. Res., 11(6), 1005-1012, 1975.
Dogru, A. H,, and J. H. Seinfeld, Comparison of sensitivity coefficient
calculation methods in automatic history matching, Soc. Per. Eng.

J., 21(5), 551-557, 1981.

Dogru, A, H., T. N. Dixon, and T. F. Edgar, Confidence limits on the
parameters and predictions of slightly compressible, single phase
reservoirs, Soc. Pet. Eng. J., 17(1), 42-56, 1977.

Douglas, J., Jr, Alternating direction methods for three space vari-
ables, Num. Math., 4,41-63, 1962.

Emsellem, Y., and G. de Marsily, An automatic solution for the in-
verse problem, Water Resour. Res., 7(5), 12641283, 1971.

Frind, E. O, and G. F. Pinder, Galerkin solution of the inverse
problem for aquifer trarsmissivity, Water Resour. Res., 9(5), 1397~
1410, 1973.

Garay, H. L, Y. Y. Haimes, and P. Das, Distributed parameter identi-
fication of groundwater systems by nonlinear estimation, J.
Hydrol., 30, 47-61, 1976,

Gavalas, G. R, P. C. Shah, and J. H. Seinfeld, Reservoir history
matching by Bayesian estimation, Soc. Pet. Eng., J., 16(6), 337-350,
1976.

Gorelick, S. M., B. Evans, and I. Remson, Identifying sources of
groundwater pollution: An optimization approach, Water Resour.
Res., 19(3), 779790, 1983.

Guvanasen, V., and R. E. Volker, Identification of distributed param-
eters in groundwater basins, J. H ydrol., 36, 279-293, 1978.

Haimes, Y. Y., R. L. Perrine, and D. A. Wismer, Identification of
aquifer parameters by decomposition and multileve] optimization,
Water Resour. Cent. Contr. 123, Univ. of Calif,, Los Angeles, 1968.



YEH: REVIEW 107

Hefez, E., V. Shamir, and J. Bear, Identifying the parameters of an
aquifer cell model, Water Resour. Res., 11(6), 993-1004, 1975.

Hoeksema, R. J., and P. K. Kitanidis, An application of the geostatis-
tical approach to the inverse problem in two-dimensional ground-
water modeling, Water Resour. Res., 20(7), 1003-1020, 1984.

Hoeksema, R. J., and P. K. Kitanidis, Comparison of Gaussian con-
ditional mean and kriging estimation in the geostatistical solution
of the inverse problem, Water Resour. Res., 21(6), 825-836, 1985.

Hunt, B. W, and D. D. Wilson, Graphical calculation of aquifer
transmissivity in northern Canterbury, New Zealand, J. Hydrol. N.
Z., 13(2), 66-81, 1974.

Irmay, S., Piezometric determination of inhomogeneous hydraulic
conductivity, Water Resour. Res., 16(4), 69 1-694, 1980.

Jackson, D. R., and G. Aron, Parameter estimation in hydrology: The
state of the art, Water Resour. Bull,, 7(3), 457-471, 1971.

Jacquard, P., and C. Jain, Permeability distribution from field pres-
sure data, Soc. Pet. Eng. J., 5(4), 281294, 1965.

Jahns, H. O., A rapid method for obtaining a two-dimensional reser-
voir description from well pressure response data, Soc. Pet. Eng. J.,
6(4), 315-327, 1966.

Journel, A. G., and J. C. Huijbregts, Mining Geostatistics, Academic,
Orlando, Fla., 1978.

Judge, G. J., W. E. Griffiths, R. C. Hill, and T-C. Lee, The Theory and
Practice of Econometrics, John Wiley, New York, 1980.

Kalman, R. E, A new approach to linear filtering and prediction
problems, Trans. ASME J. Basic Eng., 82, 35-45, 1960.

Kashyap, D., and S. Chandra, A nonlinear optimization method for
aquifer parameter estimation, J. Hydrol., 57, 163173, 1982.

Kitamura, S., and S. Nakagiri, Identifiability of spatially-varying and
constant parameters in distributed systems of parabolic type,
SIAM J. Contr. Optimiz., 15(5), 785-802, 1977.

Kitanidis, P. K., and E. G. Vomvoris, A geostatistical approach to the
inverse problem in groundwater modeling (steady state) and one-
dimensional simulations, Water Resour. Res., 19(3), 677-690, 1983.

Kleinecke, D. Use of linear programming for estimating ge-
ohydrologic parameters of groundwater basins, Water Resour. Res.,
7(2), 367-375, 1971.

Kleinecke, D., Comments on “An automatic solution for the inverse
problem” by Y. Emsellem and G. de Marsily, Water Resour. Res.,
8(4), 1128-1129, 1972.

Kruger, W. D., Determining a real permeability distribution by calcu-
lations, J. Pet. Technol., 691-696, 1961.

Kubrusly, C. S., Distributed parameter system identification, a survey,
Int. J. Contr., 26(4), 509-535, 1977.

Labadie, J. W., Decomposition of a large scale nonconvex parameter
identification problem in geohydrology, Rep. ORC 72-73, Oper.
Res. Cent., Univ. of Calif., Berkeley, 1972.

Levenberg, K., A method for the solution of a certain nonlinear prob-
lems in least squares, Q. Appl. Math., 2, 164-168, 1944.

Lin, A. C, and W. W-G. Yeh, Identification of parameters in an
inhomogeneous aquifer by use of the maximum principle of opti-
mal control and quasilinearization, Water Resour. Res., 10(4), 829
838, 1974.

Lovell, R. E., L. Duckstein, and C. C. Kisiel, Use of subjective infor-
mation in estimation of aquifer parameters, Water Resour. Res.,
8(3), 680690, 1972.

Marino, M. A, and W. W-G. W. Yeh, Identification of parameters in
finite leaky aquifer systems, J. Hydraul. Div. Am. Soc. Civ. Eng.,
99¢HY?2), 319-336, 1973.

Martensson, K., Least square identifiability of dynamic systems, Tech.
Rep. RB 7344, Dep. Electr. Eng., Univ. South. Calif,, Los Angeles,
1973.

Marquardt, D. W., A aigorithm for least squares estimation of nonlin-
ear parameters, SIAM, J., 11,431-441, 1963.

McElwee, C. D., Sensitivity analysis and the groundwater inverse
problem, Groundwater, 20(6), 723-735, 1982.

McLaughlin, D. B., Investigation of alternative procedures for esti-
mating groundwater basin parameters, report prepared for the
Office of Water Research and Technology, U.S. Dep. Int,, Water
Resour. Eng., Walnut Creek, Calif.,, 1975.

McLaughlin, D. B., Hanford Groundwater Modeling—A numerical
comparison of Baysian and Fisher parameter estimation tech-
niques, Rockwell Hanford Oper., Ener. Syst. Group, Rockwell Int,,
Richland, Wash., 1979.

Navarro, A., A modified optimization method of estimating aquifer
parameters, Water Resour. Res., 13(6), 935-939, 1977.

Nelson, R. W., In-place measurement of permeability in hetero-
geneous media, 1, Theory of a proposed method, J. Geophys. Res.,
65(6), 1753-1758, 1960.

Nelson, R. W., In-place measurement of permeability in hetero-
geneous media, 2, Experimental and computational considerations,
J. Geophys. Res., 66(8), 2469-2478, 1961.

Neison, R. W., Conditions for determining a real permeability distri-
bution by calculation, Soc. Pet. Eng. J., 2(3), 223-224, 1962.

Nelson, R. W., In-place determination of permeability distribution for
heterogeneous porous media through analysis of energy dissi-
pation, Soc. Pet. Eng. J., 8(1), 3342, 1968.

Nelson, R. W., and W. L. McCollum, Transient energy dissipation
methods of measuring permeability distributions in heterogeneous
porous materials, Rep. CSC 691229, Water Resour. Div., U.S. Geol.
Surv., Washington, D. C., 1969.

Neuman, S. P., Calibration of distributed parameter groundwater
flow models viewed as a multiple-objective decision process under
uncertainty, Water Resour. Res., 9(4), 1006-1021, 1973.

Neuman, S. P., Role of subjective value judgment in parameter identi-
fication, in Modeling and Simulation of Water Resources Systems,
edited by G. C. Vansteenkiste, North-Holland, Amsterdam, 1975.

Neuman, S. P., A statistical approach to the inverse problem of aqui-
fer hydrology, 3, Improved solution method and added perspective,
Water Resour. Res., 16(2), 331-346, 1980.

Neuman, S. P, and S. Yakowitz, A statistical approach to the inverse
problem of aquifer hydrology, 1, Theory, Water Resour. Res., 15(4),
845-860, 1979.

Neuman, S. P., G. E. Fogg, and E. A. Jacobson, A statistical approach
to the inverse problem of aquifer hydrology, 2, Case study, Water
Resour. Res., 16(1), 33-58, 1980.

Nutbrown, D. A., Identification of parameters in a linear equation of
groundwater flow, Water Resour. Res., 11(4), 581-588, 1975.

Pierce, A., Unique identification of eigenvalues and coefficients in a
parabolic problem, SIAM J. Contr. Optimiz., 17(4), 494499, 1979.
Pinder, G. F., J. D. Bredehoeft, and H. H. Cooper, Jr,, Determination
of aquifer diffusivity from aquifer response to fluctuation in river

stage, Water Resour. Res., 5(4), 850-855, 1969.

Ponzini, G., and A. Lozej, Identification of aquifer transmissivities:
The comparison model method, Water Resour. Res., 18(3), 597-622,
1982.

Rowe, P. P, An equation for estimating transmissivity and coefficient
of storage from river level fluctuation, J. Geophys. Res., 65(10),
3419-3424, 1960.

Sadeghipour, J., and W. W-G. Yeh, Parameter identification of
groundwater aquifer models: A generalized least squares approach,
W ater Resour. Res., 20(7), 971-979, 1984.

Sagar, B., S. Yakowitz, and L. Duckstein, A direct method for the
identification of the parameters of dynamic nonhomogencous
aquifers, Water Resour. Res., 11(4), 563-570, 1975.

Shah, P. C, G. R. Gavalas, and J. H. Seinfeld, Error analysis in
history matching: The optimum level of parameterization, Soc. Per.
Eng. J., 18(3), 219-228, 1978.

Slater, G. E., and E. J. Durrer, Adjustment of reservoir simulation
models to match field performance, Soc. Pet. Eng. J., 11(3), 295-30S,
1971.

Smith, P. J., and B. S. Piper, A non-linear optimization method for
the estimation of aquifer parameters, J. Hydrol., 39, 255-271, 1978.
Stallman, R. W., Numerical analysis of regional water levels to define

aquifer hydrology, Trans. AGU, 37(4), 45 1-460, 1956.

Sun, N. Z., and W. W-G. Yeh, Identification of parameter structure in
groundwater inverse problem, Water Resour. Res., 21(6), 869883,
1985.

Sykes, J. F., J. L. Wilson, and R. W. Andrews, Sensitivity analysis for
steady state groundwater flow using adjoint operators, Water
Resour. Res., 21(3), 359-371, 1985.

Tang, D. H,, and G. F. Pinder, A direct solution to the inverse prob-
lem in groundwater flow, Adv. Water Resour., 2(2), 97-99, 1979.

Theil, H., On the use of incomplete prior information in regression
analysis, Am. Stat. Assoc. J., 58(302), 401-414, 1963.

Theil, H., Principles of Econometrics, John Wiley, New York, 1971.

Theis, C. V., The relation between the lowering of the piezometric
surface and the rate and duration of discharge of a well using
groundwater storage, Trans. AGU, 16, 519-524, 1935.

Thomas, L. K., L. J. Hellums, and G. M. Reheis, A nonlinear auto-
matic history matching technique for reservoir simulation models,
Soc. Pet. Eng., J., 12(6), 508-514, 1972.

Vermuri, V., and W. J. Karplus, Identification of nonlinear parame-
ters of groundwater basin by hybrid computation, Water Resour.
Res., 5(1), 172-185, 1969.

Vermuri, V., J. A. Dracup, R. C. Erdmann, and N. Vermuri, Sensitivi-
ty analysis method of system identification and its potential in
hydrologic research, Water Resour. Res., 5(2), 341-349, 1969.



108 YEH: REVIEW

Wasserman, M. L, A S. Emanuel, and J. H, Seinfeld, Practical appli-
cations of optimal-control theory to history-matching multiphase
simulator models, Soc. Pet. Eng. J., 15(4), 347-355, 1975.

Wilson, J. L, and M. Dettinger, State versus transient parameter
estimation in groundwater systems, paper presented at Specialty
Conference on Verification of Mathematical and Physical Models
in Hydraulic Engineering, Am. Soc. of Civ. Eng., Univ. of Md,,
College Park, Aug. 9-11, 1978.

Wilson, J., P, Kitanidis, and M. Dettinger, Sfate and parameter esti-
mation in groundwater models, paper presented at the Chapman
Conference on Application of Kalman Filter to Hydrology, Hy-
draulics, and Water Resources, AGU, Pittsburgh, Penn., May 1978.

Wismer, D. A, R. L. Perrine, and Y. Y. Haimes, Modeling and identi-
fication of aquifer systems of high dimension, Automatica, 6, 77-86,

70.

Yakowitz, S., and L. Duckstein, Instability in aquifer identification:
Theory and case studies, Water Resour. Res., 16(6), 1045-1064,
1980.

Yakowitz, S., and P. Noren, On the identification of inhomogeneous
parameters in dynamic linear partial differential equations, J. Math.
Anal. Appl., 53, 521-538, 1976,

Yeh, W. W-G., Aquifer parameter identification, J. Hydraul. Div. Am.
Soc. Civ. Eng., 10/{HY?9), 1197-1209, 1975a4.

Yeh, W. W-G., Optimal identification of parameters in an inhomoge-
neous medium with quadratic programming, Soc. Pet. Eng. J.,
15(5), 371-375, 1975b.

Yeh, W. W-G,, and G. W. Tauxe, A proposed technique for identifi-
cation of unconfined aquifer parameters, J. Hydrol,, 12, 117-128,
1971.

Yeh, W. W-G., and G. W. Tauxe, Quasilinearization and the identifi-
cation of aquifer parameters, Water Resour. Res., 7(2), 375-381,
1971.

Yeh, W. W-G., and G. W. Tauxe, Optimal identification of aquifer

diffusivity using quasilinearization, Water Resour. Res., 7(4), 955—
962, 1971.

Yeh, W. W-G,, and N. Z. Sun, An extended identifiability in aquifer
parameter identification and optimal pumping test design, Water
Resour. Res., 20(12), 1837-1847, 1984.

Yeh, W. W-G,, and L. Becker, Linear programming and channel flow
identification, J. Hydraul. Div. Am. Soc. Ciy. Eng., 99(HY11), 2013-
2021, 1973.

Yeh, W. W..G_ and Y. §. Yoon, A systematic optimization procedure
for the identification of inhomogeneous aquifer parameters, in Ad-
vances in Groundwater H ydrology, edited by Z. A. Saleem, pPp.
72-82, American Water Resources Association, Minneapolis,
Minn,, 1976.

Yeh, W. W-G., and Y. S. Yoon, Parameter identification with opti-
mum dimension in parameterization, Water Resour. Res., 17(3),
664672, 1981.

Yeh, W. W.-G,, Y. S. Yoon, and K. S. Lee, Aquifer parameter identifi-
cation with kringing and optimum parameterization, Water Resour.
Res., 19(1), 225-233, 1983,

Yoon, Y. S, and W. W-G. Yeh, Parameter identification in an inho-
mogeneous medium with the finite-element method, Soc. Per. Eng.,
J., 217-226, 1976,

Yziquel, A., and J. C. Bernard, Automatic computing of a transmissiv-
ity distribution using only piezometric heads, in Finite Elements in
Water Resources, edited by C. A. Brebbia, W. G. Gray, and G. F.
Pinder, pp. 1.157-1.185, Pentech, London, 1978.

—_—
W. W-G. Yeh, Civil Engineering Department, 4531C Boelter Hall,
University of California, Los Angeles, CA 90024,

(Received February 8, 1985;
revised September 4, 1985;
accepted October 2, 1985)



